Blog Tag: connected medical devices

Medical Device Connectivity Market Reported to Top $2.6 Billion by 2023

The market for medical device connectivity is projected to reach about $2.6 billion by the year 2023, according to a report published in April 2018 by several publishers.  The report states that the connectivity market for 2018 is expected to be about $940 million.  This equates to a compound annual growth rate (CAGR) from 2018 to 2023 of 23.2%.

According to news articles, the report states that “[t]he growth in this market is attributed to the increasing penetration of [electronic health records] and health information exchange systems in healthcare organizations, growing focus on care quality and patient safety, healthcare IT initiatives driving the integration of medical devices with hospital information systems, and the growing need to curtail healthcare costs through a connected healthcare environment.”

From 2018 to 2023, the medical device connectivity market CAGR is estimated to be 23.2%

The report further states the medical device connectivity services segment, as opposed to the device connectivity solutions segment, is anticipated to grow at the maximal CAGR during the “outlook period” from 2018 to 2023.  The report divides the technology sectors into wired, wireless, and hybrid technologies.  The wireless segment is projected to register the highest CAGR during the outlook period.

The report also breaks down the relevant markets into hospitals, home healthcare, ambulatory care settings, and imaging & diagnostic centers.  It finds in 2017 hospitals controlled the medical device connectivity market.  The report also finds that North America is expected to grow at the highest CAGR during the outlook period, followed by Europe.

The increase in the market is attributed in the report to “growing funding towards innovative projects in the medical market, [the] need to curtail the escalating healthcare costs in the USA, the presence of a big number of healthcare IT firms, rising investments in the healthcare sector by top market players, and increasing awareness about advanced technologies.”

The report is made available for purchase from several publishers, for example by Report Linker and Markets and Markets.

An example provided in InfoArmor's July 2016 report regarding the type of data hackers were able to obtain

Hackers Steal 600K Records from Health Care Firms – Could Your Wearable Device Be Next?

Security firm InfoArmor published a report in late July 2016 stating that a group of attackers infiltrated American health care institutions, stole at least 600,000 patient records and attempted to sell more than 3 terabytes of that associated data.  In an interview with eWeek, chief intelligence officer Andrew Komarov noted that the hackers he investigated were able to compromise different health care institutions such as private clinics, vendors of medical equipment, and suppliers.  Once inside the compromised systems, the hackers were able to take personally identifiable information and medical data, including imaging data (as shown to the right).

Komarov’s research should come as no surprise in view of a report issued by the Brookings Institute in May 2016 reporting that 23% of all data breaches occur in the healthcare industry.  In fact, nearly 90% of healthcare organizations had some sort of data breach between 2013 and 2015, costing the healthcare industry nearly $6.2 billion.

According to a report done by Bloomberg BNA, while a number of legal mandates exist (e.g. the Health Insurance Portability and Accountability Act (HIPAA), the Health Information Technology Certification Program, and the Food and Drug Administration’s (FDA) premarket review), the existing guidelines are limited.  Furthermore, medical devices face certain unique cybersecurity pitfalls.  For example, while HIPAA applies to protect health information regardless of where it’s stored, protected health information that exists on disposed of or nonfunctional medical devices can be overlooked.

Connected medical devices (i.e., medical devices that can transmit information through the internet or a networked system) also pose unexpected risks and challenges.  For example, the ability for hackers to remotely access connected medical devices can hypothetically result in significant threats to patient health and safety.  A 2012 episode of the television show Homeland featured a character hacking into and manipulating the pacemaker of the fictional vice president.  While such situations seem far-fetched, in an interview on “60 Minutes,” it was revealed that Vice President Dick Cheney’s doctor had actually disabled the wireless functionality of his heart implant, fearing that it might be hacked in an assassination attempt.

While such fears may seem fueled by paranoia, recent studies have shown that such security threats may be a real concern.  Bloomberg Businessweek reported in November 2015 that the Mayo Clinic engaged a number of high-profile “white hat” hackers to conduct a study of cybersecurity vulnerabilities in their medical devices.  These “white hat” hackers worked on a number of different medical devices, including things such as cardiac monitors, infusion pumps, and hospital beds. In one alarming example, one hacker was able to gain control of an infusion pump – the Hospira Symbiq Infusion System – and was able to remotely cause it to deliver a potentially lethal dose of medication.  Shortly thereafter, the FDA issued a safety notice recommending a recall and the stopped usage of the aforementioned pump.

With increasing concerns about cybersecurity, as discussed on this blog previously, the FDA is currently seeking comment on proposed guidelines that outline when software changes to medical devices would require manufacturers to submit a premarket notification.