Blog Tag: IoT

Healthcare Industry May Not Be Prepared For Internet of Things

A recent survey conducted by ZingBox, a Silicon Valley internet security startup, found that more than 90% of healthcare IT networks have Internet of Things (IoT) devices. The survey further found that more than 70% of IT departments believe that current security systems for laptops and servers can also protect connected medical devices.

According to Xu Zou, ZingBox CEO, “Typically you will see 10 to 15 IoT devices per bed in a hospital.” He defines a healthcare IoT device as anything that is portable and connected to the Internet.

This has caused serious problems with medical and other organizations. For example, on May 12, 2017 a ransomware cryptoworm called WannaCry attacked on devices on every continent. An estimated 200,000 computers in 150 countries were infected. The attack included hospitals in England and Scotland and affected up to 70,000 devices, including MRI scanners, blood-storage refrigerators, and theater equipment. Some ambulances were diverted and some non-critical emergencies were turned away.

A more recent global attack occurred on June 27, 2017. Petya (also known as NotPetya), a ransomware cryptovirus, affected largely Ukrainian and Russian hospitals but also hit locations in France, Germany, Italy, Poland, the United Kingdom, and the United States.

In ransomware attacks, malware prevents a user from accessing certain computer records (e.g., patient records). These records are not released until a specified amount is paid to an anonymous recipient. Generally, these types of attacks rely on cryptocurrencies, such as BitCoin. Cryptocurrencies function like paper money, so the transaction is anonymous and difficult to trace.

“Health care has been late to respond to the need for protected information, and the information is worth more,” said Michael Ebert, a partner with KPMG who advised companies on cybersecurity. “It’s amazing how far behind we are, and we know we have to do something.”

Ransomware attacks not only show the vulnerability of hospitals (and healthcare companies generally), but they present a threat to human life. For example, experts have suggested that up to 500,000 children’s medical records are on sale and could be used to compromise the care given to a child.

Ransomware attacks are on the rise. A 2017 Verizon Data Breach analysis found that ransomware attacks rose from the 22nd most common type of malware attack to the 5th most common between 2014 and 2017. “[H]olding files for ransom is fast, low risk and easily monetizable,” wrote the authors. The report noted that 72% of all health care malware attacks in 2016 were ransomware.

Investments into IoT technology is also rising. So far it is at nearly $25 billion and is expected to rise dramatically. Accordingly, the spread of the technology can be expected to increase. Examples within the medical device community include blood pressure and heart rate monitors.

Most of those surveyed by ZingBox may be optimistic about the state of their security. However, the healthcare industry is likely to be more vulnerable in the future as the IoT becomes more ubiquitous.

 

 

FDA Issues Proposed Guidelines for Managing Cybersecurity in Medical Devices

The Food and Drug Administration recently issued a draft guidance for managing cybersecurity in medical devices.  The guidance document provides the FDA’s postmarket recommendations for monitoring, identifying, and addressing cybersecurity vulnerabilities in medical devices.  According to the FDA:

A growing number of medical devices are designed to be networked to facilitate patient care.  Networked medical devices, like other networked computer systems, incorporate software that may be vulnerable to cybersecurity threats.  The exploitation of vulnerabilities may represent a risk to the safety and effectiveness of medical devices and typically requires continual maintenance throughout the product life cycle to assure an adequate degree of protection against such exploits.  Proactively addressing cybersecurity risks in medical devices reduces the patient safety impact and the overall risk to public health.

Recognizing that medical devices and the surrounding network infrastructure cannot be completely secured, the FDA encourages manufacturers to establish a defined process to systematically conduct a risk evaluation and determine whether a cybersecurity vulnerability affecting a medical device presents an acceptable or unacceptable risk.  According to the guidance document, such a process should focus on assessing the risk to the device’s essential clinical performance (i.e., performance that is necessary to achieve freedom from unacceptable clinical risk, as defined by the manufacturer) by considering: (1) the exploitability of the cybersecurity vulnerability, and (2) the severity of the health impact to patients if the vulnerability were to be exploited.  Recommendations regarding timely remediation and reporting of such vulnerabilities are also provided.

Comments on the draft guidance should be submitted by April 21, 2016 to ensure consideration.  Instructions on how to submit comments can be found here.