Blog Articles

Apple, Fitbit Join Pilot Program to Quicken FDA Regulatory Review

On September 26, 2017, the FDA announced that it has chosen nine tech companies to participate in a pilot program (FDA Pre-Cert) to help tech companies bypass some regulations that have hindered health software and products release, Bloomberg reports. According to the Bloomberg article, this program operates as a “fast track” for these technology companies, which amongst others include Apple, Fitbit, Samsung, Johnson & Johnson, and Verily Life Science (an arm of Google parent Alphabet Inc.), and is said to allow them to develop technologies rapidly, while allowing the FDA to maintain oversight over those projects.

This program is said to signal a broader trend at the FDA to streamline regulation since FDA Commissioner Dr. Scott Gottlieb was appointed in May. Bloomberg reports that as technology companies have entered the healthcare and medical device arena, questions arose of whether these companies were required to seek FDA approval on their products. For example, in 2013, the consumer gene-testing company 23andMe Inc. was ordered by the agency to temporarily stop selling its health analysis product until it was cleared by regulators. “We need to modernize our regulatory framework so that it matches the kind of innovation we’re being asked to evaluate,” Commissioner Gottlieb said.

As Fortune reports, the pilot companies can potentially get their products pre-cleared in lieu of undergoing the FDA’s traditional medical device regulatory framework. Under FDA Pre-Cert, the FDA will instead primarily examine the software (rather than the tech device itself) and inspect facilities to ensure it meets the FDA’s rigid standards. If the companies pass the audit, the companies will attain pre-certified status. The FDA Pre-Cert was launched as part of the agency’s Digital Health Innovation Action Plan. The press announcement states that the “plan seeks to outline[] the agency’s vision for fostering digital health innovation while continuing to protect and promote public health by providing clarity on medical software provisions of federal legislation passed in 2016 (21st Century Cures), adding expertise to the digital health unit and initiating the FDA Pre-cert pilot program.” The FDA plans to share public updates via the pilot program webpage as well as through stakeholder meetings, including a January 2018 workshop.

For more information on the FDA’s Pre-Cert press release, please visit the site here.

 

 

Medtronic Receives Regulatory Approval for Surgical Navigation Device

According to Medtronic news release, the company recently received 510(k) clearance from the U.S. FDA and a CE mark from the E.U. for its StealthStation™ ENT surgical navigation system.  The system will assist surgeons performing procedures within the ear, nose, and throat (ENT) anatomy.

Medtronic explains that the StealthStation™ ENT works by generating an electromagnetic field within the ENT anatomy during surgery and allows surgeons to track the locations of instruments during procedures, much  like a GPS system used for cars.  The surgeons can view 3-D structures on a 27-inch, high-resolution touch-screen monitor.  Medtronic already markets a similar system, the StealthStation™ S8, for use in neurosurgery and spine procedures.

The press release reports that StealthStation™ ENT system provides surgeons with enhanced visualization during procedures and also includes several software and hardware innovations such as Virtual Endoscopy.  Virtual Endoscopy gives surgeons a simulated view of  a patient’s sinus cavities that have previously been unavailable using traditional endoscopy.  Thus, Medtronic explains, a surgeon can load a Virtual Endoscopy with a patient’s pre-operative data and practice that patient’s surgery prior to setting foot in the operating room.

The StealthStation™ ENT system should enhance patient outcomes and provide a valuable tool to surgeons.  Dr. Joseph Raviv, director of endoscopic sinus and skull base surgery at NorthShore University HealthSystem commented:

The intraoperative use of computer-aided surgery is very helpful to assist the surgeon in clarifying complex anatomy during sinus and skull base surgery . . . . It provides an added level of assurance and may allow for a more thorough sinus procedure.

 

Netherlands Adopts US FDA-based UDI System for Medical Devices

A voluntary agreement (link in Dutch) was consummated by the Dutch Ministry of Health, industry, and hospitals. According to an Emergo blog post, under the terms of the agreement, the Netherlands will adopt the US Food and Drug Administration’s Unique Device Identification (UDI) system.

According to the post, Dutch hospitals agreed to use UDI codes exclusively for identification and traceability of medical devices, and industry promised to place only UDI codes on device labels. According to the Emergo post, this means that every manufacturer that wants their devices used in Dutch hospitals now needs to provide UDI codes on those devices.

Image resultAn article from Securing Industry cites to the the Dutch Ministry of Health as saying that the decision to use the FDA’s UDI system was made to avoid adding complexity for manufacturers by requiring a separate system. According to the article, the Netherlands is the first in the EU to adopt the FDA’s UDI system, a decision that some believe may increase the chances of the UDI system being adopted elsewhere in the region.

In 2013, the US published the rule requiring UDI codes to be assigned by device manufacturers to each version or model of a device. Under the published rule, the codes must be in both human and machine readable formats. According to the FDA, implementation of UDI codes improves patient safety, modernizes device postmarket surveillance, and facilitates medical device innovation.

 

 

FDA Approves First-Ever Mobile App for Addiction Treatment

The FDA recently approved the marketing of the first-ever prescription digital therapeutic to be used in the treatment of substance use disorder (SUD).

The reSET® mobile app, developed by Pear Therapeutics, is approved to assist individuals undergoing outpatient therapy for alcohol, cocaine, marijuana, and stimulant addictions.  The application is not intended for use in treating opioid dependence, however.

The reSET® application is designed to provide a form of treatment called cognitive behavioral therapy.  It teaches SUD patients practical skills that help them abstain from using drugs and stick with their rehab programs, and provides a series of reward-based incentives.  reSET® is not approved as a standalone treatment.  Instead, it is designed to be used in conjunction with outpatient addiction therapy.

“This is an example of how innovative digital technologies can help provide patients access to additional tools during their treatment,” said Carlos Peña, Ph.D., M.S., director of the Division of Neurological and Physical Medicine Devices in FDA’s Center for Devices and Radiological Health.  “More therapy tools means a greater potential to improve outcomes, including abstinence, for patients with substance use disorder.”

reSET® was reviewed through the FDA’s de novo premarket review pathway, a regulatory scheme for low- to moderate-risk devices for which there is no legally marketed predicate to which the device can claim substantial equivalence.  The FDA reviewed data from a multi-site, unblinded 12-week clinical trial of 399 patients.  In this trial, patients with alcohol, cocaine, marijuana, and stimulant SUD who used reSET® demonstrated statistically significant greater adherence to abstinence (40.3 percent) compared to patients not using reSET® (17.6 percent).

Corey McCann, President and CEO of Pear Therapeutics stated in a company press release:

We believe that prescription digital therapeutics hold promise in improving patient outcomes across a wide range of central nervous system disorders including psychiatry, neurology and pain, and will become a vital part of tomorrow’s treatment paradigm across all disease areas.

Regulatory approval of reSET® may represent an important step forward in the use of mobile applications to treat people with psychological, neurological and substance abuse disorders.

Research into Cannabidiol (CBD) Progresses

Kalytera Therapeutics, clinical-stage pharmaceutical company, recently announced plans for clinical trials focused on the treatment of Graft versus Host Disease using Cannabidiol (CBD), a compound found in cannabis.  This development highlights the expanse of continued research—and potential—of CBD-based medicines and methods of treatments being pursued by companies globally.

Cannabis is a flowering plant that has long been recognized for its uses in fiber production and hemp oils, recreation, and medical applications.  According to Project CBD, CBD is one of a diverse class of chemicals called cannabinoids found in the cannabis plant.  CBD was first identified in the early 1940s , but more than 20 years would pass before researchers identified the more famous cannabinoid, tetrahydrocannabinol (THC).  Likely because of its psychoactive effects, THC would go on to dominate research studies of cannabis.  However, the classification of marijuana as Schedule I substances under the Controlled Substances Act of 1970, federally sponsored medical research into CBD and its effect dwindled.

Both CBD and THC interact with the human body through the CB1 receptor of the endocannabinoid system, a system of receptors found in the central and peripheral nervous systems and many other organs of the body.   The endocannabinoid system is involved in the regulation of, for example, appetite, pain, mood, and memory.  By binding more weakly with the CB1 receptor than THC, CBD invokes a different response within the endocannabinoid system.  Unlike THC, CBD tends not to cause psychoactive effects.  Instead, as a growing body of research suggests, CBD plays a role in moderating the effects of THC and reducing inflammation, nausea and pain.  Multiple studies suggest that CBD has therapeutic applications for a wide variety of conditions, and companies across the world are researching medical treatment for specific maladies.  A few notable projects evaluating potential uses for CBD include:

  • GW Pharmaceuticals has commenced FDA-authorized clinical trials for Epidiolex®, a CBD-based drug for treating a rare genetic epileptic encephalopathy called Dravet syndrome. GW reports to have fourteen distinct patent families with claims directed to treatment of epilepsy.  Other GW patent filings for CBD include treatments for constipation and cancer.
  • Zynerba Pharmaceuticals is developing a synthetic CBD-based gel that is absorbed through the skin and aimed at treating adult epilepsy, osteoarthritis, and fragile-X syndrome. Zynerba has patents directed to transdermal CBD compositions and other CBD delivery systems.
  • Insys Therapeutics, Inc. is in Stage 2 clinical trials for a CBD-based drug to treat severe pediatric epilepsy and applications directed to stable formulations of CBD for oral administration.
  • Kannalife Sciences Inc. licenses a U.S. government-owned patent for cannabidiol-based drugs for the treatment of diseases caused by oxidative stress. Kannalife is developing CBD-based drugs for the treatment of Hepatic Encephalopathy and Chronic Traumatic Encephalopathy, a type of brain damage.
  • Kalytera reports to have filed composition and method-of-use patents on its CBD treatments.

The science of CBD medicine is still being developed.  To date, no CBD-based drug has received FDA approval.  According to the DEA, CBD is still considered a Schedule I Controlled Substance by the Drug Enforcement Agency (DEA).  As such, the future for CBD producers and researchers is uncertain.  Pharmaceutically, CBD presents many challenges to delivery into the body.  For example, with a half-life of only 18-32 hours CBD is difficult to stabilize and deliver to a target location within the body.  As explained by Kalytera, when taken orally, CBD must pass through the liver, which significantly reduces the bioavailability of CBD.  Moreover, CBD is lipophilic and accumulates in the skin when using transdermal delivery.  As such, effective delivery of CBD is a significant hurdle.

Despite these challenges, the potential relaxation of legal constraints on cannabis cultivation and sales across the United States and the promise of an entire new field of pharmaceuticals continues to drive innovation in CBD medicine.

Social Media Success: Trends in Pharma Digital Strategies

According to data published by business intelligence firm Cutting Edge Information, the majority (73%) of pharmaceutical marketing teams expect to use or continue to use the popular social media forum Facebook to facilitate their digital marketing strategies over the next one to two years.

According to Cutting Edge Information, “[i]n these strategy meetings, teams consider several factors, including the target patient population, therapeutic area and geographic region.” For example, “region can affect strategies because each country has its own pharma marketing rules and regulations.”

The survey, which included marketing teams from companies such as GlaxoSmithKline, Johnson & Johnson, Chiesi, Janssen, Mallinckrodt, and Takeda, also revealed that YouTube (64%) was the second most popular among the pharmaceutical marketing teams, while LinkedIn (55%) and Twitter (45%) rounded out the top four.

Not as popular, but still commonly used social networking sites include Instagram (18%) and Vimeo, Google+, Tumblr, and SlideShare each with 9% of pharmaceutical marketing teams utilizing them. Interestingly, additional data from the study show that no surveyed pharmaceutical or medical device companies reported using Pinterest, Vine, Flickr or Reddit.

Recall Highlights Medical Device Cybersecurity Issues

On August 29, the FDA announced a recall of 465,000 implantable pacemakers, citing concerns that hackers may be able to take control of the pacemakers’ settings. This would open patients up to danger from improper pacing or rapid depletion of the devices’ batteries, according to the FDA’s statement.  Instead of removing and replacing the pacemakers, the recall is designed so that doctors will install a firmware upgrade that removes the vulnerability.

Newsfactor reports that there have been no reported exploits of the vulnerability and no devices have yet been compromised.

The recall highlights that medical device manufacturers are beginning to take a more focused approach to cybersecurity.  Mac McMillan, CEO of privacy and cybersecurity firm Cynergistek, told Modern Healthcare that “If devicemakers didn’t already have developers sitting around looking at cybersecurity, they now have to incur the costs of making sure their devices stay current. In the past, they’ve developed devices and put them on the market and moved onto the next device. This is a new thing for them.”

Mike Kijewski, CEO of medical device security company Medcrypt, also suggested that the FDA should update its regulations to help medical device companies stay on top of cybersecurity threats.  “If the FDA can say you’re just doing the update for cybersecurity and the changes are minimal and the functionality of the device isn’t changing, they can make the update happen faster,” Kijewski suggested.

Canada’s equivalent of the FDA, Health Canada, is still looking into the vulnerability and its proposed solution, and has set a target of 75 days to resolve the situation.

Digital Currencies and Blockchain in the Medical Arena

Recently, digital currencies, such as bitcoin, have greatly increased in popularity. Some of this popularity may be attributed to digital currencies’ many purported advantages over traditional currencies, such as that blockchain technology allows for a distributed and cryptographically secure ledger without the use of traditional banking institutions. Newer and more advanced digital currencies have recently been introduced with the added advantage of smart contracts, which are said to be self-executing contractual clauses that may be programmed into a digital currency transaction. As such, many new digital currencies have been appearing with individuals investing in Initial Coin Offerings (ICOs), which are somewhat akin to the Initial Public Offerings (IPOs) of a traditional corporation.

Even more recently, a few companies have begun to make use of digital currencies and blockchain technology in the medical arena. Many have found blockchain technology uniquely suited to secure patient records, and have found that the smart contracts of digital currencies may allow individuals greater control of their medical data. Below is a summary of a few fields of medicine and companies within those fields in which digital currencies and blockchain are already being developed.

Medical Records and Health Data

According to The Merkle, Bowhead Health is the first medical device company using their AHT digital currency tokens with smart contracts to create a new medical data market. The company plans to allow individuals with Bowhead’s digital currency to control the dissemination of their medical data, and also to compensate those individuals if and when they choose to share with research institutions. Bowhead’s AHT tokens are said to allow 70% of research fees to be distributed to users with the other 30% going to token holders.

According to Blockchain News, Medicalchain is a UK-based company using blockchain technology to allow patients to securely store and send their medical records to their healthcare professionals. Medicalchain is said to allow patients to have a centralized medical record accessible from anywhere in the world, and allow individuals the ability to control medical institutions’ access to their records.

The Medical Society of Delaware has partnered with the company Medscient, and they are using blockchain technology to create a proof-of-concept platform to allow insurers and medical care providers to access patient records, according to The Cointelegraph. The article further states that this partnership was made possible when the state of Delaware became the first state to pass a law allowing the use of blockchain technology in business for stock trading and record-keeping.

Medical Licenses

The Illinois Blockchain Initiative has partnered with Hashed Health to create a pilot program to streamline the process of issuing and tracking medical licenses, according to The Cointelegraph. The goal of this partnership is said to give patients and healthcare providers a transparent license registry system that uses smart contracts to automatically update information.

Medicine and Artificial Intelligence (AI)

According to news sources, Doc.ai is a collaboration between developers from the universities of Stanford and Cambridge, and is said to be creating a platform built on blockchain technology and using AI to create a resource to answer patient’s specific questions regarding their personal health records and their physician’s analysis.

According to Reuters, The Bitfury Group and Insilico Medicine, a Baltimore-based medical AI firm, have formed a partnership to study and develop blockchain technology and AI solutions in the medical industry for healthcare data.

EIT Acquires Patent Portfolio For 3D Printed Spinal Fusion Cages

On August 22, 2017, Emerging Implant Technologies GmbH (EIT) announced the acquisition of 22 patents and pending applications relating to 3D printed expandable spinal fusion cages based on living hinges from Dr. Morgan Lorio, a spinal surgeon based in Nashville, Tennessee.  A recent published application relating to the subject matter can be found here.  FIG. 3 of that application, said to illustrate a 3D model printing method, and FIG. 7 said to illustrate an intervertebral cage apparatus are reproduced below.

 

EIT describes itself as a German medical device manufacturer specializing in implants for spinal alignment.  In July 2017, a news article noted that EIT received approval from the U.S. Food and Drug Administration (FDA) to commercialize its spinal interbody product offerings.  Regarding EIT’s acquisition, Guntmar Eisen, co-founder and CEO of EIT, stated:

“This IP is our platform to take fully 3D printed fusion cages to the next level by adding functionality to our EIT cellular titanium® cages.  This will give the surgeon more options intraoperatively, reduce inventory and support MIS techniques – and at the same time reduce cost of expandable cages.”

According to PRWeb, the first functional spinal fusion cages based on this patent acquisition will be launched in 2018.

Takeda Pharmaceuticals Explores GI Devices in New Partnership with Nanotechnology Company

Takeda Pharmaceutical Company, a Japan-based global pharmaceutical company, recently announced an agreement with BioSurfaces Inc., a small Massachusetts research company, to research the development of medical devices for the treatment of gastrointestinal (GI) diseases. According to the announcement, Takeda will contribute its GI expertise to the development of medical devices to be designed by BioSurfaces using BioSurface’s biomaterial nanotechnology. Takeda’s GI drug Entyvio has recently been predicted by gastroenterologists to see significant growth. Fittingly, BioSurfaces touts its nano-fibrous materials, said to be formed by electrospinning FDA-approved polymers, as superior platforms for drug-delivery. Vincent Ling, Ph.D., senior director of the Materials and Innovation, Takeda Pharmaceutical Sciences, commented:

Our research collaboration will lead to the development of cutting-edge use of biopolymers and device fabrication technology. Application of developed technology has the potential to help prevent strictures and promote healing of fistulas, which are common manifestations of GI diseases.

The partnership continues a trend for Takeda, which has entered into at least 50 other new partnerships over the past 20 months, according to Life Science Leader. A little over a year ago, the 236-year old pharmaceutical company announced its plans to restructure the R&D organization by focusing on three therapeutic areas – Oncology, Gastroenterology (GI), and Central Nervous System (CNS) – as well as on Vaccines. As reported by Life Science Leader, the partnerships reflect the “restructuring of the R&D organization around the idea of increasing external collaboration on a global scale.” BioSpace notes that Takeda’s new strategy also includes splitting-off several assets outside of its new R&D focus as well as investing in strategic acquisitions, with the Financial Times reporting in 2016 that Takeda had allocated $15 billion for U.S. acquisitions.

Takeda’s partnership with BioSurfaces is not the first time it has teamed up with a nanotech partner to complement its drug discovery with drug delivery modalities. “Takeda is devoting itself to the idea of spinning off companies based on new technologies, including those discovered outside. As a pharma designed for drug discovery, at times it’s best to fund an alternate modality, so it can grow externally, before integrating it into our pipeline. I think that’s a view of nanotechnology we can entertain for the future” said Ling in 2016.

Speedboat RS2 Endoscopic Device Receives FDA Clearance

UK-based Creo Medical recently announced the clearance of its Speedboat RS2 surgical endoscopic device for minimally invasive removal of lesions in the bowel.

According to the press release, the Speedboat RS2 device and the associated CROMA energy platform received premarket clearance through the 510(k) process by demonstrating that the device is substantially equivalent to an existing legally marketed device.  According to Creo, the FDA clearance was received earlier than expected.  Expected to take roughly six months, the 510(k) process was completed just 49 days after submission.

The Speedboat RS2 device for endoscopic submucosal dissection is said to be the first of several devices planned for use with Creo’s CROMA radiofrequency and microwave generator. According to the announcement, the Speedboat RS2 is intended for removal of early stage cancerous and pre-cancerous lesions, and combines bipolar radiofrequency cutting and microwave coagulation for precise dissection and controlled hemostasis.  The combined functionality is said to reduce the risk of puncturing tissue and enhances the safety profile of endoscopic lesion removal.  According to Creo’s CEO Craig Gulliford,

Over the coming weeks, we will be looking to bring forward the development of our US capabilities whilst continuing with the promising training programme underway in Europe.

 

Gilead to Acquire Kite Pharma for $11.9 Billion

Gilead Sciences, Inc. recently announced an agreement to acquire Kite Pharma, Inc. for $11.9 billion.  According to the announcement, Kite Pharma focuses on cell therapy treatment for cancer, which involves the genetic engineering and reintroduction of a patient’s own cells to better identify and combat cancers.

(Graphic from Kite Pharma website)

With the announcement, Gilead’s President and CEO stated that “cell therapy has advanced very quickly, to the point where the science and technology have opened a clear path toward a potential cure for patients[,]” and the acquisition “establishes Gilead as a leader in cellular therapy[.]”  The announcement notes that Kite Pharma’s treatment for non-Hodgkin lymphoma is currently under review by the FDA, with a target action date of November 29, 2017.

Kite Pharma, Inc. is based in Santa Monica, CA and Gilead Sciences, Inc. has its U.S. headquarters in Foster City, CA.

Pediatric Healthcare Innovators Compete for Funding

The FDA, according to its website, currently supports eight consortia that provide advice and funding to help commercialize technologies for pediatric care.  The FDA defines “pediatric” as encompassing devices used for patients who are 21 years of age or younger at the time of diagnosis or treatment.

Many of the consortia hold innovation competitions where winners are awarded grants and support services. For example, PR Newswire reports that the New England Pediatric Device Consortium (NEPDC) has awarded three companies grants and in-kind services for products aimed at preventing the dislodgement or unintended removal of catheters or tubing.  According to NEPDC’s Request for Abstracts, the grants are up to $50,000 each.  NEPDC offers quarterly grant opportunities; the next abstract deadline for grant funding is October 9, 2017, with applications due on October 23, according to PR Newswire.

The National Capital Consortium for Pediatric Device Innovation (NCC-PDI) has narrowed a record number of 98 applications from across the globe down to twelve finalists, according to PR Newswire. This is the 5th annual Pediatric Device Innovation Symposium hosted by NCC-PDI, a FDA-funded consortium led by the Sheikh Zayed Institute for Pediatric Surgical Innovation and A. James Clark School of Engineering at the University of Maryland according to the competition’s homepage.  NCC-PDI highlights that up to six finalists will be awarded up to $50,000 each after the presentations held on September 24, 2017.

Another consortia, the Atlantic Pediatric Device Consortium (APDC), announced that it will hold Round 1 winner presentations at its 7th annual Pediatric Device Innovation Competition on September 25, 2017.  The proposal deadline was July 31, 2017, and award winners will be notified on October 30, 2017, according to APDC.

Also, in January of 2017, the Philadelphia Pediatric Medical Device Consortium (PPDC) announced that it chose three companies from eight finalists to receive seed grants of $50,000 each.  The PPDC announced that the Request for Applications for its next Sponsored Project Proposals begins on September 11, 2017.

According to a 2016 FDA review, the FDA-funded pediatric consortia have advised 406 pediatric device projects and innovators since 2013, and as of the first fiscal quarter of 2016 there were 10 patents obtained and 5 devices available for use in the care for pediatric patients.

Medical Device Compared to ‘Star Trek Tricorder’ Presented at AACC

Basil Leaf Technologies recently presented their DxtER device at the 69th AACC Annual Scientific Meeting & Clinical Lab Expo in San Diego.  The DxtER device has been compared to the Star Trek medical Tricorder, winning first place in the Qualcomm Tricorder Xprize competition, a global contest inspired by the popular science fiction series. Image result for tricorder

According to Basil Leaf Technologies, the DxtER device weighs less than five pounds and is designed to enable consumers to monitor five real-time health vital signs and diagnose 34 diseases using artificial intelligence.  Basil Leaf Technologies reports that the DxtER device is currently undergoing clinical trials for FDA approval.

According to AACC CEO, Janet B. Kreizman, “DxtER is the first consumer-friendly mobile health device to combine vital sign monitoring with an extensive diagnostic testing menu, and it could lead to a huge leap forward in patient care.”  While the DxtER device may not be available in the immediate future, Dr. Gene Friedman, assistant professor of biomedical engineering at Johns Hopkins University School of Medicine, estimates that “in the next 10 to 20 years it’s going to be a big revolution in personal healthcare.”

Teleflex Acquires UroLift® Maker NeoTract for $1.1 Billion

Wayne, Pennsylvania-based Teleflex Inc.  announced it will purchase privately-held NeoTract Inc. for approximately $1.1 billion. According to the press release, Teleflex will pay NeoTract $725 million when the deal closes and an additional $375 million upon NeoTract hitting certain sales goals through 2020. The companies said they expect the deal to close within the next 30 days.

According to its website, Teleflex is a global provider of medical technologies in surgical, anesthesia, cardiac care, urology, and respiratory care fields.  NeoTract describes itself as a company dedicated to developing minimally-invasive and clinically-effective devices that address unmet needs in the field of urology. NeoTract’s device, the UroLift® System, is said to treat benign prostrate hyperplasia (BPH) by using small implants to hold the enlarged prostate tissue out of the way of the urethra.

Teleflex’s CEO Benson Smith characterized NeoTract as “a truly unique company with a differentiated technology that targets a greater than $30 billion addressable market.” Smith also stated that a second-generation UroLift® System is expected to launch in the second half of 2018. NeoTract’s revenue is expected to be between $115 million to $120 million this year, compared to about $51 million in 2016, and is expected to increase at least 40 percent in 2018, the companies said in a joint statement.

Reuters notes that the deal is Teleflex’s 23rd since 2008 and follows its $1 billion acquisition of Vascular Solutions in December. Teleflex expects the NeoTract deal to slightly diluteTeleflex’s adjusted earnings this year, be neutral to profits next year, and be accretive starting in 2019.

Nanochip Device with Potential To Heal Tissue and Organs

According to a regenerative medicine article published online on August 07, 2017 in the journal Nature Nanotechnology titled “Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue”, Researchers at the Ohio State University Wexner Medical Center and College of Engineering have developed a technology that has the potential to generate any cell type of interest for treatment within a patient’s body. According to the article, the researchers call their technology Tissue Nanotransfection (“TNT”), and state that a chip-sized device may be used to repair injured tissue or restore the function of aging tissue.  This can include, for example, organs, blood vessels and nerve cells.

Dr. Chandan Sen, the director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies and the executive director of Ohio State’s Comprehensive Wound Center states that “by using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining.”

Sen further states that “This is difficult to imagine, but it is achievable, successfully working about 98 percent of the time. With this technology, we can convert skin cells into elements of any organ with just one touch. This process only takes less than a second and is non-invasive, and then you’re off. The chip does not stay with you, and the reprogramming of the cell starts. Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary.”

According to the Nature Nanotechnology article, the TNT chip-sized device has two major components – (1) a nanotechnology-based chip that sits on the skin, and (2) biological cargo contained within to affect the tissue underneath.

As illustrated in the figure above, the chip is said to deliver pre-programmed DNA or RNA non-invasively into living skin cells using a high-intensity, focused electric field and converting it into whatever type of cells chosen.  “This technology does not require a laboratory or hospital and can actually be executed in the field,” Sen said. “It’s less than 100 grams to carry and will have a long shelf life.”  “We are proposing the use of skin as an agricultural land where you can essentially grow any cell of interest,” Sen said.

According to the article, initial testing on mice has been promising.  The researchers reported that they were able to reprogram skin cells into vascular cells on a mouse that had a badly injured leg with no blood flow. The article noted that as shown in the figure below, after one week of treatment, blood vessels appeared around the leg and within two weeks the leg had been completely restored.

This graphic shows the results of a breakthrough discovery called tissue nanotransfection. In laboratory tests at The Ohio State University Wexner Medical Center, researchers were able to heal the badly injured legs of mice in just three weeks, with no other treatments, simply by touching the legs once with a high-tech silicone chip.

Furthermore, the article noted that a mouse that suffered a stroke regained neurologic function, demonstrating that this technology could also be applied to organs and nerve cells.

According to researchers, the aforementioned technique is said to be unique as it skips the usual intermediary step of creating pluripotent stem cells.  Furthermore, the article notes that because the process is non-invasive and the reprogrammed cells are part of the patient’s body, there are no concerns regarding immune suppression.

Researchers find broad potential application of the disclosed technology.  For example, it is said to have the potential to save lives of car crash victims, deployed soldiers injured on site, and potentially find cures to Alzheimer’s and Parkinson’s disease.

Additional details regarding the technology are discussed in the video below:

The Medical Device Tax Lives On

For opponents of the 2.3 percent medical device tax, it looked like the repeal/replacement of the Affordable Care Act would alleviate their concerns.  However, following the failure of repeal legislation that would have killed off, or delayed, the tax, the tax is on pace to be reinstated on January 1st, 2018 after a two-year gap.

Regardless of the status of the Affordable Care Act, news articles have indicated that companies and lawmakers opposed to the tax are considering pursuing a number of different options, such as adding tax delay language into other bills.  Accordingly, a group of conservative action groups are pushing Congressional leaders to pursue a repeal of the tax, including preparing a letter to House speaker Paul Ryan and Senate majority leader Mitch McConnell.  Further, the Advanced Medical Technology Association will be running digital and social media ads throughout this month in a number of states, hoping for tax repeal once lawmakers are back in session in September.

While it can be difficult to truly define a correlation between job performance and the medical device tax, a member survey performed by the Medical Device Manufacturers Association found that 70% of companies added jobs in 2016-2017 and R&D increased by 19% on average.  On the other hand, in 2015 the Congressional Research Service found that there were no significant losses due to the tax.

According to news sources, the tax applies to hospital and physician medical equipment, but excludes many consumer medical items (eyeglasses, hearing aids, etc.).

 

K2M Obtains Exclusive License to Patent Portfolio

K2M Group Holdings, Inc. recently announced its acquisition of a portfolio of 17 issued and pending patents for expandable interbody technology.  According to K2M, the company is a global leader in the medical device industry and provides complex spine and minimally invasive solutions to help patients with difficult spinal pathologies achieve three-dimensional (i.e., axial, coronal, and sagittal) Total Body Balance™.  K2M explains that the acquisition of the “comprehensive patent portfolio” allows the company to expand its portfolio of 3D-printed spinal solutions.

In the same press release, K2M also announced its plan to integrate its 3D printing technology, Lamellar 3D Titanium Technology™,  into new products developed with the recently acquired intellectual property.  According to K2M’s Platform Technologies page, Lamellar 3D Titanium Technology™ utilizes an advanced 3D printing method to grow implants from titanium powder through selective application of a high-energy laser beam.

Speaking about the exclusive license, Eric Major, K2M President and CEO, stated:

We are excited to have obtained the exclusive rights to this intellectual property portfolio and look forward to integrating our 3D printing technology with new expandable spinal devices as part of our effort to build a comprehensive portfolio of industry-leading, 3D-printed solutions to address the full range of spinal pathologies.

K2M recently expanded its portfolio of 3D-printed spinal solutions in June 2017 after receiving FDA clearance of MOJAVE™ PL 3D Expandable Interbody System, which is a fusion device designed to allow for independent adjustment of the anterior and posterior height in the lumbar spine.  K2M also introduced its SAHARA™ AL Expandable Stabilization System in June, which is the only expandable, lordotic interbody device currently available that uses an integrated screw fixation to help achieve spinal balance.

Excelsius GPSTM: Globus Medical Receives 510(k) Clearance for Robotic Surgery Platform

Globus Medical announced early today that the Excelsius GPSTM surgical platform has received 510(k) clearance from the U.S. Food and Drug Administration (FDA), as reported by a press release dated August 17, 2017.

Globus Medical, which describes itself as a musculoskeletal implant manufacturer, acquired the robotics developer Excelsius Surgical and its robotic guidance device Excelsius GPSTM three years ago according to press releases.  The Excelsius GPSTM platform is said to function as a robot-assisted surgery guidance system “designed to minimize radiation exposure, streamline workflow, and reproducibly assist in implant placement,” according to the press release.  Globus Medical further describes the platform as being compatible for use with pre-operative CT, intra-operative CT, and fluoroscopic imaging modalities.

The FDA’s decision is stated to allow the platform for use within minimally invasive and open orthopedic and neurosurgical procedures, including screw placement applications in spine and orthopedic surgery.  This announcement also follows Globus Medical’s earlier news release announcing that the Excelsius GBSTM system received CE mark approval in the European Union.

Norbert Johnson, Vice President of Robotics, Imaging, & Navigation at Globus Medical, views these results as an example of Globus Medical’s developmental capabilities:

We believe the Excelsius GPS™ System will advance patient care and provide tangible benefits for surgeons and hospitals in terms of time, accuracy and reduced radiation exposure through the application of robotic and navigation technology in spine and orthopedic surgery.

The Excelsius GPSTM received FDA 510(k) clearance after Globus Medical re-filed its 510(k) bid following an FDA decision that Globus Medical’s initial bid had not “sufficiently addressed the FDA’s questions,” according to Mass Device.

House Passes Bill Relaxing Reporting Requirements

The U.S. House of Representatives recently passed the FDA Reauthorization Act of 2017.  This bill seeks to change the requirement for companies to report medical device malfunctions to the FDA.  Previously, companies had to submit a report within 30 days of  a problem.  Under the current version of the Reauthorization Act, companies will be able to submit reports once every three months instead. Additionally, these reports will be able to “summarize previously reported product malfunctions, rather than filing detailed reports on each case” as reported by the StarTribune. However, this does not affect the 30-day reporting requirement for medical device companies to report “adverse events” or anything that result in actual injury to consumers.

This measure is part of a piece of legislation that must be renewed every five years and which sets the fees that device makers pay the FDA to review their products. The goal of the agreement from the device maker’s perspective is to reduce the time it takes for the FDA to review products and get them to market. According to the New York Times, this bill “compels the F.D.A. to speed medical devices onto the market — and into patients — faster than ever.” But this may not be in patients’ best interest, because medical device malfunctions are already “vastly underreported” as acknowledged by the FDA.

StarTribune reports that proponents of the change say that it would “simplify the needlessly repetitive process of reporting known product problems.” Minneapolis-based med-tech regulatory attorney Mark DuVal said that “A lot of MDRs (Medical Device Reports) are really boilerplate and repetitive,” and that “[i]t would be nice to be able bundle them.” According to the StarTribune, DuVal thinks that the current system of reporting MDR’s creates a lot of work for companies while doing little to inform doctors about issues that are known. Janet Trunzo, a senior executive vice president with the lobbying group AdvaMed, said in a statement that the reporting provision “will allow the agency to better focus its resources on more serious reportable events.” According to Trunzo, the quarterly summary reporting only applies to well-understood and familiar malfunction incidents. Medical device companies would still be required to file an individual report on any malfunction incident that had not been previously reported.

According to the New York Times, critics of the change do not think relaxing the rules is proper when so much already goes unreported. Jack Mitchell, director of health policy for the National Center for Health Research, said that “[p]ost-market surveillance of medical devices continues to be dangerously slow and clearly inadequate to protect patients from risky devices.” Mitchell thinks that loosening up the reporting rules will “exacerbate the tendency to underreport.” Ms. Tomes, who is now the chief executive of Device Events, which mines FDA’s device data to find signals of problems, also does not think this loosening of the reporting rules is in the public’s best interest. Ms. Tomes pointed out that last year, many reports about battery depletion of cardiac defibrillators were reported as “malfunctions.”

The bill still needs to be passed in the Senate before being signed into law by President Trump. The Regulatory Affairs Professionals Society reports that this bill is “must-pass” legislation because there will be massive layoffs at the FDA if the fee agreements are not reauthorized before the current ones expire on Oct. 1, 2017.