Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 1 of 38 PagelD# 79

Exhibit B

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 2 of 38 PagelD# 80

US006058413A

.
United States Patent [1] Patent Number: 6,058,413
Flores et al. (451 Date of Patent: May 2, 2000
[34] METHOD AND APPARATUS FOR [51] It CL7 s GOGF 9746
UTILIZING A STANDARD TRANSACTION [32] US.Cl i, 709/101; 705/7
FORMAT TO PROVIDE APPLICATION I58] Field of Searchoocooveecereccocce. 395/671, 682;
PLATFORM AND A MEDIUM 705/7, 8; 709/100-108, 300-305
INDEPENDENT REPRESENTATION AND
TRANSFER OF DATA FOR THE {56] References Cited
MANAGEMENT OF BUSINESS PROCESS U.S. PATENT DOCUMENTS
AND THEIR WORKFLOWS
5,630,069 571997 Flores et al. e, 705/7
[75] Inventors: Rodrigo F. Flores, Berke[ey;»]‘ﬂblo A. Primary Examiner—Alvin E. Oberley
F]““_’S’ Alameda, both of Callf'; .R"’UI Assistant Examiner—St. John Courtenay, I
Mcd.ma—Mora Teaza, Mexico City, Attorney, Agenr, or Firm—Blakely Sokoloff Tayvlor &
Mexico; Thomas E. White, Monte Zafman
Sereno, Calif; John A. McAfee,
Kensington, Calif.; Manuel Jasso [57] ABSTRACT
Nm‘mz, Alameda, Cam]; 'llhomas G_‘ The present invention is a method and apparatus which is
Buchler, Berkeley, Calif; Ruy L Gift, used to enable application developers to generate workflow
San Anselmo, Calif. enabled applications which request services from the work-
.) . . flow scrver component of the workflow system, remotely
(73] Assignee: ?cluE) n Technologies, Inc., Alameda, and indirectly using messaging, shared databases or inter-
“alil process communications. The present invention provides a
standard transaction format (STF) for accessing such a
(21] Appl. No.: 08/855,214 workflow system through STF processors via messaging,
21 Filed: May 13, 1997 updates to the shared databases or inter-process communi-
(22] Hile a5 cations. Workflow enabled applications are used by users to
Related U.S. Application Data act and participate in business processes and cnable users
and managers 1o observe and query the status of workflows
[63] Continuation of application No. 08/420,337, Apr. 11,1995, and business processes.

abandoned, which is a continuation of application No,
08/023,056, Feb. 25, 1993.

ACTION BASED TRANSAGTIONS

11 Claims, 7 Prawing Sheets

_ ERROR
WORKFLOW RESPONSE WS TxAPI
ENABLED ! ! o STF TRANSACTIONS
APPLICATION AT AT PROCESSOR | (UPDATE TXDB) | DATABASE
BOUND DATA \—mmemeee
(WFSTATUS)
QUERY BASED TRANSACTIONS
e ERROR <
:N ABLSD (REQUEST) i WS TPl | e
WF STATUS ADT DATABASE
APPLICATION PENDING ACTIONS PROCESSOR | (READ TxDB)
AVAILABLE BPs
{RESPONSE)
RETURN WORKFLOW STATUS BASED TRANSACTIONS
<
WORKFLOW ERAOR TRANSACTIONS
ENABLED (RESPONSE) STF WS STFOAPI DATABASE
PROCESSOR -
APPLICATION NOTIFY OCES80 (READSTFQY [L___
FOLLOW-UP
REMINDER
ERROR
API CALL

MESSAGE

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 3 of 38 PagelD# 81

6,058,413

Sheet 1 of 7

May 2, 2000

U.S. Patent

0:0:4
HIWOLSND &d

0:0:4
HINHO4HId ¢S

TN

HINHO3H3d 1S

< 1371vdvd

g T¥i3s

Y3IWHO4H3d id

| VIH3S
0:0:9

ew\v/.
HIANOLSND Ld

| 137vHvd
0:0:1

HINOLSND ¢d

HINOLSND €8

Q31VILINI SI

MOTINEOM
WIHIS ¥ IVHL
S3AVIIGNI NN STHL / y3mH04H3d 2

S

HINOLSND i8S

0:6:0

HINOLS

e

HINHO4YHId 1D

nd ¢d

et

G21VILINI SI
SMOTINHOM TYNOILIONGD
OML 30 INO LVHL

JAYOIONT SXNIT 383HL

} TYNOLLIONGD
1€:0
H3WOLSND L3

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 4 of 38 PagelD# 82

6,058,413

Sheet 2 of 7

May 2, 2000

U.S. Patent

¢ b4

ASVYHd IONVINHO4IHId——

H3AH3SEO

eI SYHA NOILOVAHASILYS

HIWHO4H3d NOILOVHSILYS HIWOLSND
40 SNOILLIANOD

3SVHd TvSOdOHd——

ISVHd LNIWIIHOV

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 5 of 38 PagelD# 83

6,058,413

Sheet 3 of 7

May 2, 2000

U.S. Patent

HIOVNVA
HIAY3S
MOTINHOM

NOILYOT1ddV
s3qrne | MO
ASKIWNY NOLLYOFddY |
40S$300Hd
b
18 | vouveis idy SONLS i SNOLLVENVEL
wakOazd ||"OURRS || TS || oug S || TAOTMOM || MOTEOM
I 3
L\ d
SONLLNOH
an3no 4us ([NAULAAIINID | 31naamos TOIAVN. | | SNOLLOVSNYHL || sNowLNI43a
\d 1 L4 i y y
HIOVNVA HIIANYH
Jﬂ@ﬂﬂwﬂm SNOLLOY IN3AZ
418 IN3OY MOTIHOM
H3LIHAHAINI
431¥0dN 40$S300Hd
AONISNYA | [WHOIVLINVASNI | | MOTINHOM | | MOTXHOM

HIDYNYRK

3INCIHOS

HIOVNYAN
RN

HIAHIS MOTINHOM

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 6 of 38 PagelD# 84

U.S. Patent May 2, 2000 Sheet 4 of 7 6,058,413

INCOMING OUTGOING

' i

TRANSPORTER

TRANSACTION TRANSACTION
PARSER FORMATTER

TRANSACTION
PROCESSOR

!

WORKFLOW SERVER APIS

Fig. 4

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 7 of 38 PagelD# 85

U.S. Patent May 2, 2000 Sheet 5 of 7 6,058,413
STF TRANSACTION gfﬁvﬁﬁﬁ
INITEP - INITIATE BUSINESS PROCESS
INITWF - INITIATE WORKFLOW g
ST = ACT IN A WORKFLOW ™
BIND DATA » BIND DATA >
(WORKFLOW |REQUEST STATUS ™ STF GET WORKFLOW STATUS >
Apmcaﬁgm GET AVAILABLE BPS | |PROCESSOR|GET AVAILABLE BPS : wggg\%gw
L
GET PENDING ACTIONS QUERY WORKFLOWS
- e
REQUESTED STATUS RETURN WORKFLOW STATUS
"+ BOUND DATA “*RETURN BOUND DATA
AVAILABLE BP ““RETURN AVAILABLE BPS
™ PENDING ACTIONS “*RETURN PENDING ACTIONS
"~ NOTIFIGATION "~ NOTIFIGATION

Fig. 5

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 8 of 38 PagelD# 86

U.S. Patent May 2, 2000 Sheet 6 of 7

6,058,413

Legend:

A —»BClassAis defivedfromClassB (Ais-aB)

A o B Objectof Class A has a Pointerto
an object of Class B (A has-a B)

A—oB Error TxProcessor
Class A instantiates Class B (Glcbal)

TFTransporier

'\
Exf-‘ormatter] (TxParser
J

INIFile
(' STFTransDbSQL)
(STFTransMsgMHS)
(STFTransMsgviM)
(Envelope) (BoundDat)

Act
Note: Type of Transactions
Init: INitBP, IntWF
’ Retum Act: Act
QOO A Get: GetWFStatus,GetAvaiBPs, GetPendingActions
STFTxKwd Retum: RetumWFStatus

Fig. 6

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 9 of 38 PagelD# 87

U.S. Patent

May 2, 2000
ACTION BASED TRANSACTIONS
ERROR
WORKFLOW (RESPONSE)
ENABLED s STF
APPLICATION INITIATE PROCESSOR
T BOUND DATA
(WFSTATUS)

QUERY BASED TRANSAGTIONS

ERROR
WORKFLOW (REQUEST)
ENABLED I e sTATUS STF
APPLICATION | pENDING ACTIONS PROCESSOR
T AVAILABLE BPs
(RESPONSE)

RETURN WORKFLOW STATUS BASED TRANSAGTIONS
ERROR

WORKFLOW [
ENABLED
APPLICATION [

STF

(RESPONSE) PROCESSOR

NOTIFY
FOLLOW-UP
REMINDER
ERROR

APl GALL
MESSAGE

Fig. 7

Sheet 7 of 7

WS TxAPI

WS TxAPI
{READ TxDB)

WS STFQAPI
(READ STFQ)

(UPDATE TxDB)

6,058,413

TRANSACTIONS
DATABASE

TRANSACTIONS
DATABASE

S

TRANSACTIONS

DATABASE

STF

QUEUE
S—

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 10 of 38 PagelD# 88

6,058,413

1

METHOD AND APPARATUS FOR
UTILIZING A STANDARD TRANSACTION
FORMAT TO PROVIDE APPLICATION
PLATFORM AND A MEDIUM
INDEPENDENT REPRESENTATION AND
TRANSFER OF DATA FOR THE
MANAGEMENT OF BUSINESS PROCESS
AND THEIR WORKFLOWS

This is a continnation of application Ser. No. 08/420,337,
filed Apr. 11, 1995 now abandoned which is a continuation
of Ser. No. 08/023,056 filed Feb. 25, 1993,

BACKGROUND OF THE INVENTION

1. Ficld of the Invention

Businesses are demanding new systems that directly
support the management of business processes, systems that
bring order and coordination to the flow of work. They are
secking to antomate that part of office work that has been
impervious to conventional data processing and information
processing systems, which were not designed for business
process management and are not well-suited to help with it.

The present invention is part of a system that, when
implemented in software, provides businesses with the 1ools
they need to manage business processes efficiently and
cost-cffectively.

The invention can be applicd to such a system, whether
the system is a simple application, such as intelligent forms
routing, to sophisticated mission-critical enterprise-wide
systems that integrate all marketing, production, and cus-
tomer fulfillment processes.

The resnlting system enables users of the system to take
coordinated action quickly and to manage processes pain-
lessly. The resulis are increased productivity, reduced cycle
time and hence, improved customer satisfaction.

Workflow-enabled systems facilitate business processes.
To do so, a workflow management system performs eight
key functions:

Notifies the user that he or she has a step to begin or to

complete.

Provides the user with the proper tools to complete a task.

Provides the user with the proper information to complete
a task.

Allows the user to see where a task fits in the overall
process.

Manages the proper reminders, alerts, and follow-ups 1o
keep the process moving.

Automales certain standard procedures.

Integrates with the organization’s existing business sys-
tems.

Provides simple application program interfaces (APISs)
that allow develepers to develop new custom apyplica-
tions that are workflow-cnabled.

The workflow system’s architecture is designed to fit
within a variety of computer systems, collecting around
itsell not only specific applications, but also system
enhancements and utilities from users and third-party devel-
opers. In addition, the architecture is designed to allow for
interoperability among different applications and across
diverse platforms.

A fundamental concept of a workflow system is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a
customer, a performer, and conditions of satisfaction. The

10

15

30

35

40

45

50

55

60

65

2

customer and performer are roles that participants can take
in workflows. In addition, cach workflow can have observ-
ers.

In a workflow, the customer is the person for the sake of
whom the work s done, ¢ither because they made a request
or accepled an offer. It is customers who are responsible for
cvalnating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for
completing the work and for declaring to the customer when
the work is done.

Requests and Offers are the two basic types of workflows.
There arc other workflow types such as Question, Inform
and Note that are simplified derivations of Reguest and
Offer. The conditions of satisfaction specify the work to be
performed by the performer. In a request, the customer
specifics the conditions of satisfaction, and in an offer the
performer specifies them. (Then, of course, the two can enter
into negotiation about the work to be done.}

For example, given the sentence:

“John asked Frank to prepare the report and deliver it by

noon on Friday,”
John is the customer for this workilow, Frapk is the
performer, and the conditions of satisfaction are “prepare the
report and deliver it by noon on Friday.” Further, because
John asked for the report rather than Frank offering it, this
workllow is ol the type Request.

Given the senlence:

“John proposed to prepare the report and deliver it by

noon on Friday for Frank,”
John 1s the performer for this workflow, Frank is the
customer, and the conditions of satisfaction are still “prepare
the report and deliver it by noon on Friday.” Further because
Joha proposed the report rather than Frank asking for it, this
workflow is of the type Offer.

Observers of workflows take no direet action; they usually
observe for management or training purposes.

Business process maps display the workflows as loops,
and display the relevant information about each workflow—
the customer, the performer, the conditions of satisfaction
and the cycle time. [FIG. 1 1s a business process map having
a primary workflow 11, conditional workflows 13 and 15, a
conditional iink 17, parallel workflows 19 and 21, serial
workflows 23 and 25. In a workflow system of the type used
in conjunction with the present invention, associated with
each workflow are various parametcrs such as roles, cycle
time, conditions of satisfaction or associated semantics to
the links that imply automated action or provide the frame-
work for application building, all of which are necessary to
create a usetul business process represeniation.

Each workflow has four phases as shown in FIG. 2. The
first phase is called the proposal phase during which a
reguest is made of the prospective performer by a customer
or an offer 10 a customer is made by a prospective performer.
The sccond phasc is called the agreement phase during
which the otler is accepted by the customer or the request is
agreed 1o by the performer and conditions of satisfaction are
identified. Of course, during the agreement phase the origi-
nal condifions of satisfaction can be negotiated by the
customer and performer until an agreement is reached. The
third phase is called the performance phase during which the
performer undertakes to meet the agreed to or accepted
conditions of satisfaction. When the performer believes that
the conditions of satisfaction have been met, the performer
declares completion. The last phase is the satisfaction phase
during which the customer determines whether or not the
conditions of satisfaction have been met by the performer,
and if so, declares satistaction.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 11 of 38 PagelD# 89

6,058,413

3

A workflow system incorporates the following compo-
nents which are shown in FIG. 3, a workflow server and
databases, application program interfaces (APIs) and work-
flow scrver manager. In addition, a complete workflow
system of the type in which the standard transaction format
(STF) processors of the present invention may be utilized
includes an application builder, analyst, workflow enabled
applications and reporter components. The application
builder, analyst, workflow enabled applications and reporter
components, while useful components of a complete work-
flow system, do not form part of the present invention and
details concerning such components are set forth herein only
as needed for an understanding of the invention. The present
invention is cencerned mainly with STF processors used in
combination with a complete workflow system.

A workflow system provides certain services as follows:

transactions setrvices which are those related to initiating
and acting in workflows by users and agents;

definition services which are those related to defining the
elements of a business process and its workflows and
workflow links;

names and routing services which are those related to
defining organizational roles and identities;

configuration services which are provided to the system
administrator through a specific configuration database;

scheduling services which allow an authorized user to
create, modify and delete records of scheduled business
processes; and

STF processing services which are provided by the server
to STF processors (which are the subject of the present
invention as described below) through an STF queue
database.

Further details concerning the definition services, names
and routing services, configuration services and scheduling
services are set forth in co-pending U.S. Ser, No. 08/014,75%6
filed Feb. 8, 1993. The present invention is directed to the
STF processing services provided by a workflow system as
well as §TF processors.

In addition to the foregoing services provided by a
workflow sysiem, external interfaces to the system provide
services that are used by end-user applications, the workflow
application builder, the workflow reporier and the STF
Processors.

A workflow system utilizes a worklow server which
concentrates workflow operations in the server rather than in
the end user applications.

All work done by the server is performed by one of three
processes which are referred to as the transaction manager,
follow-up manager and date/time schedule manager. Pro-
cesses are software compoenents or {asks that are architected
to run as separate entities from each other. The workflow
server controls the three basic processes based upon work-
flow system server administration data in a configuration
database in the following manner. First, it determines when
to run the transaction manager and spawns that process.
Second, it determines when to run the follow-up manager
and spawns that process. Third, it determines when to run
the date/time schedule manager and spawns that process.

These processes may be separate executables or simply
separate tasks within the body of the workflow system
SETVEL.

A workflow system also utilizes:

4 definitions database which contains records of the
definitions of the organizations, business processcs,
workflows, rolcs, and acts;

a lrapsactions database which contains records of the
enactment of workflows;

10

15

30

35

40

45

s0

55

60

65

4

a names/routings database which contains records of the
roles and identities of the organization where the work-
flow system is installed;

a schedule database which stores the dale and time when
a business process must be initiated;

an administration/configuration database which stores
information needed by the workflow server to operate;
and

a STF queue database which stores the records of notifi-
calions to be sent to users that interact with the work-
flow system through an STF processor interface.

The remaining elements of a workflow system are:

1) Work[low APIs which provide a programming inter-
face to access the services of the workilow server.
Workflow enabled applications, STF processors and the
application builder are all developed using these APIs.
APIs of a workflow system are as follows: transactions
API, definitions API, reporter APIL, names and routings
API, schedule API and administration APL.

2) Workflow server manager which is a component of the
workflow system that provides a user interface for
specific maintenance and administration services of the
workflow server.

3} Workflow application builder which is a Graphical
User Interface (GUT) application that allows a business
process designer to specify the business process design
with its network of workflows and to autcmatically
generate the definitions needed for a workflow enabled
application to work.

4) Workflow analyst which is a GUI application that
allows a business process analyst to specify the map of
business processes with its network of workflows,

5) Workllow reporter which is a GUI application thal
provides an interface 10 the transaction datlabascs
through the workflow reporter API of the system.

6) Workflow-cnabled applications which interface to the
server via the workflow APIs or via direct access to the
transactions database ol the workflow server, or via the
use of an STF processor which can use different inter-
facing mechanisms such as messaging, database or
inter-process communication.

7) STF processors which are a set of mechanisms for
developing workflow-cnabled applications arc pro-
vided in a workllow system through the definition of a
standard transaction format (STF). Such STF proces-
sors are the subject of the present invention.

In U.S. Ser. No. 600,144 {iled Oct. 17, 1990 and U.S. Ser.
No. 07/368,179 filed Jun. 19, 1989, both owned by Action
Technologics, Inc., the assignee of the present application,
methods and systems for managing workflows, called con-
versations in the referenced applications, are described.
However, the teachings in the cited references are limited to
single workflows with no capability for mapping business
processes made up of a number of workflows linked
together. In U.S. Ser. No. 08/005,236 filed Jan. 15, 1993 now
U.S. Pat. Ne. 5,630,069, a method and apparatus are dis-
closed for creating and modifying business process maps
which is a desirable but not nccessary component of a
workflow system. This component is referred to as the
workflow analyst. [n U.S. Ser. No. 08,014,796 filed Feb. 8,
1993, a method and apparatus are disclosed for implement-
Ing a complete workflow system for managing business
processes and their workflows.

BRIEF SUMMARY OF THE INVENTION

The present invention is a method and apparatus which is
used to enable application developers to generate workflow

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 12 of 38 PagelD# 90

0,058,413

5

enabled applications which request services from the work-
flow server component of the workflow system, remotely
and indirectly using messaging, shared databases or inter-
process communications. The present inventlion provides a
standard transaction format {STF) for accessing such a
workflow system through STF processors via messaging,
updates to the shared databascs or inter-process communi-
cations. Workflow enabled applications are used by users to
act and participate in business processes and e¢nable users
and managers to ohserve and query the status of workflows
and business processes.

In describing the invention, the following terms with their
indicated definitions are used:

Act

Basic linguistic occurrence by which people intervene in
moving a workflow towards completion.
Agreement

The outcome of the negotiation phasc, in which two
parlies come fo a common agreement of the conditions of
satisfaction.

Business Process

Anetwork of workflows linked together that represent the
recurrent process by which an organization performs and
completes work, delivers products and services and satisfies
Customers,

Business Process Map

‘This is a graphical representation of business process,
which shows its workflows and their relationship.
Primary Workflow

This is the first workflow which is initiated when a
business process is initiated. Its condition of satisfaction
represent the condition of satisfaction of the business pro-
cess.

Conditional Link

Alink that indicates that only one of a group of workflows
will be triggered based on some condition.
Conditions of Satisfaction

Conditions declared by or agreed to by a customer. The
fulfillment of which is the purpose of a workflow.
Customer

The role in a workflow who makes a request or accepis
and offer.

Customer Satislaction

The objective of a workflow, the accomplishment of
which is declared by the customer when the conditions of
satisfaction in the workflow have been fulfilled.

Cycle Time

A measure of the time from initiation to successful
completion of a workflow phase, a complete workflow or a
business process.

Exception Flow

The path in the business process workflow map which is
followed if a customer cancels or a performer revokes or
declines.

Tink

A defined dependency between two workflows and the
mechanism by which dependencies between workflows is
established.

Loops (Workflow)

A workflow is represented graphically by an elliptical
loop with arrows shown in a clockwise direction wherein
each quadrant of the ellipse signifies different phases of the
workflow.

Normal I'low

This is the path followed in a business process map when
workflows complete with customer satisfaction.
Observer

30

40

45

50

55

60

65

6

A role in a workflow who cannot perform acts in the
workflow, but is informed of acts in the workflow, and has
access to the information and data associated with the
workflow.

Offer

The act by which the performer can initiate a workflow,
specifying conditions of satisfaction that he is willing to
satisfy for a customer.

Organization Roles

Named positions in an organization who are authorized to
make certain requests, agreements, take certain actions, set
certain policies, and make certain decisions. The kind of
roles will be accountant, office manager, elc.

Performer

One of the principal roles in a workflow: the role that
commils to complete the conditions of satisfaction.
Phase

Acharacterization of the status of a workflow hased on the
acts that have happened and the acts that are permitted. Each
workflow has four phases namely, the proposal phase the
agreement phase, the performance phase and the satisfaction
phase
Request

A customer does this act to initiate a worktlow and declare
conditions of satisfaction.

Trigger

An action in a workflow which causes an action in some
other workflow.
Triggered

Action in a workflow based on certain conditions/status in
some other workflow.
Workflow

A structured set of acts between customers and performers
organized to satisfy a customers conditions of satisfaction.
Workflow Activation

A triggered action that enables the customer or performer
of the workflow to take the initial act of the workflow.
Workflow Initiation

An act of request or offer initiates a workflow.
Workflow Roles

The association of participants in the workflows that take
the acts in workflows; three roles are distinguished in
workflows: customer, performer, and observer,

Workflow Type

This indicates whether the workflow is of request, offer or

note type.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is pictorial representation of a business process,
1.¢., a set of linked workflows.

FIG. 2 shows the phases of a workflow.

FIG. 3 is a block overview diagram of a complete
workflow system including STT processors.

[IG. 4 is a block overview diagram showing the major
components of an STF processor.

FIG. § shows the exchange of STF transactions between
a workflow enabled application, the STF processor and
SEeIver.

FIG. 6 is a generic class hierarchy diagram of a STF

processor showing how the classes in STF processors are
linked.

FIG. 7 shows the interaction of workflow enabled
application, STF processor and workflow server for different
kinds of transactions.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 13 of 38 PagelD# 91

6,058,413

7
DETAILED DESCRIPTION OF THE
INVENTION
Overview

The present invention is directed 10 a Standard Transac-
tion Format (STF) specification to address the requirements
of applications, platform and medium independent repre-
sentation and transfer of data related to business processes of
a workflow system. The present invention is also directed to
STF processors which are the modules that provide the
server-side connection point for client/server interactions
using any of several STF specification variants. These STF
specification variants are messaging, updates to shared data-
bases and inter-process communicalions, By accessing STF
processors workflow enabled applications, vsing a standard
transaction format, are able to request services from the
workflow server component of the workflow system,
remotely and indirectly using messaging, shared databases
or inter-process communications. In other words, the STF
specification defines the semantics for accessing the work-
flow services.

For each one of these types of interfaces there is a
syntactic definition that gives the specific format flor the
representation of the workflow data and the process specific
data in that medium. This syntax definition constitutes an
STF specilication that a particular work{low enabled appli-
cation will then use.

‘The communication and interface between workflow
enabled applications and the server is provided by STF
processors. These STF processors map and translate
between a workflow-enabled application’s data format and
the data elements of the workflow system APIs.

STF processors provide a layer for integration of many
different protocols and technologies. STF processors can be
constructed for any message transport database technology,
and inter-process communication protocol.

The interface from STF processors 1o the server is accom-
plished through the werkflow system APIs. From the point
of view of woerkflow services, the STF processors appear to
the server as additional applications.

Since an STF processor is an application whose job is to
interface external systems to the workllow system, there is
one STF processor for each different type of system that
interfaces to the workflow system.

Business processes can be managed across platforms in
diverse locations with diverse interconnections through the
management of a class of transaction called STF transac-
tions. Transactions include taking acts, getting reports of
status, and notifications of acts taken by other workllow
participants, among others.

Three classes of STF processors are described, which are
characterized by the method of connection between client
and server, which, as previously noted are: messaging,
shared database, and inter-process communication. Within
these interfaces, STF processor variants are required to

conform to the various syniactic requirements of the com-

munication technology. The particulars of such variants
depend upon such syntactic requirements, however, the
implementation details of such STF processor variants
should be apparent 1o persons skilled in the art having
knowledge of the syntactic requirements and the descrip-
tions contained herein.

The client/server communications medium determines
whether a client application can run synchronously with the
server—making server requests and receiving server
responses durigg the duration of 4 connection, or
asynchronously—making server requests, disconnecting,
and reconnecting later for responses. Inter-process commu-

2
wn

ta
L

40

45

50

8

nications media typically allow synchronous connections
between client and server, message based media typically
allow only asynchronous commuunication between client and
server, and clients and servers which communicate through
a shared database can operate either synchronously or asyn-
chroncusly.

Thus, while STF processors may be provided for several
STF specification varants, an STF processor with generic
functional requirements is described. Further, this descrip-
tion focuses particular attention to the requirements of an
STF processor for a messaging platform known as MHS
{message handling system) available from Novell Corpora-
tion which will serve as an example case.

FIG. 4 shows the major components of an STF processor,
namely, a transporter module, which includes a transaction
parser and a transaction formatter, and a transaction proces-
sor module. The transaction processor module processes
STF transactions received from workflow enabled applica-
tions through the transporter module and sent to workflow
server via calls to the workflow server APls. Similarly, it
processes transactions queued by the workflow server and
passes them 1o the transporter module to be sent 1o the WEA,
The transaction processor is environment independent. The
transporter module is adapted to the STF environment (i.e.,
messaging, shared database or inter-process
communication) and receives incoming transactions from a
messaging application, shared database or inter-process
communication and sends outgoing transactions to a mes-
saging application, shared database or inter-process com-
munication.

The workflow transactions API provides an interface to
the workflow server. The workflow server responds to
transactions it finds in the transactions database and updates
the workflow and places status information in the STF queue
database to be processed by STF processors.

STF Transactions

An STF transaction is a workflow transaction defined in
a specific format called Standard Transaction Format (STF).
This standard enables any application to interface to the
workflow server. An application is said to be a Workflow
Enabled Application (WEA) when it is able to send/receive
the workflow transactions in STF. STF transactions are
passed from the STF processor to the workflow server via
calls to the transactions APL.

An STF fransaction is composed of an envelope and
workflow data. The envelape provides comnection and
addressing information translated by STF processors to
formats appropriate for the particular medium supported by
the STF processor. Workflow data includes workflow spe-
cific data and bound process data. STF transactions are
exchanged between client and server as shown in FIG. §.
The figure shows some types of transactions as well as the
role of the STF processor,

There are five STF transaction types as follows:

Initiating a workflow

Acting in a workflow

Requesting the status of a workflow

Requesting list of declared business processes

Reguesting list of workflows with pending actions
Components of STI '[tansactions
STF Envelope

The STF envelope is entirely platform and medium
dependent. The envelope contains addressing information.
In a messaging environment, the STF envelope would
typically specify user and STF processor email addresses or
equivalent. In an [PC environment (connection oriented), the

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 14 of 38 PagelD# 92

6,058,413

9

S1F envelope would typically specify a logical wnit identi-
fier or equivalent. In a database environment, the STF
envelope would typically specify user and STF processor
identifications or equivalent.

It contains STF Processor ID for identification of a
particular STF processor. Essentially this is the address with
which a WEA sends an STF transaction.

For cxample, to address an STF processor STFPROCL in
work group ATI, a WEA in a messaging environment might
specify the STF processor address as follows:

To: STFPROC1L@ATI
Workflow Data

As previously noted, worktlow data includes workflow
specific data and bound process dala.

Workflow Specific Data

All workflow transactions include a set of required work-
How specific data e¢lements that are defined by the STF
specification.

The workflow specific data component of an STF trans-
action contains workflow attributes required to do each of
the five types of transactions. Lach type of STT transaction
has a different set of workflow information. The STF trans-
action sent by 4 WEA must contain a Transaction 1D
(STFID) keyword. This aids the WEA and STF processor in
identifying a transaction uniquely and helps the STF pro-
cessor in sending status transactions to the WEA. Each STF
transaction also has a set of mandatory parameters called
minimal transaction parameters. Each STF transaction may
also contain other optional parameters which are called
extended set parameters.

An example of a minimal set of parameters for the
workflow specific data component of an STF transactions is
as follows:

STF type (iransaction type)

STF transaction identification

An example of an extended set of parameters for the

workflow specific data component of an STF transac-
tions is as follows:

workflow participants or users

workflow type

transaction type

expeciled and/or requested workflow completion dates

workflow status
Bound Process Data

Bound process dala are data elements which are managed
by the workflow server for purposes of management and as
values in assignment, calculation, and flow control state-
ments. Bound data elements are application-specific exten-
sions to the STF spectfication. Examples include sales price,
image data, and quantity ordered. These additional data
elements can be used in processing and display definitions of
client applicaticns and the processing and control of busi-
ness process definitions at the workflow scrver. For example,
a time sheet submission workflow includes bound process
data in the form of project names and hours worked. The

bustness process definition might specify that the sum of s

hours worked on a particular day is used o calculate an
cmployee’s paycheck amount which is used in a recurrent
automated workflow to cut a pay check.

The STF interchanges shown in FIG. § are realized via
client applications, STF processors, and workflow server
interfaces. lor example, a workflow enabled application
may use MHS messages to send 8TF transactions {o the
workflow server. STF transactions are sent as attachments to
MIIS messages. The STF processor receives these
messages, identifies the STF transaclion, parses the trans-
action and passes information as required to the workflow
SCIVET,

10

15

40

45

60

65

10

Mapping Between STF Transactions And Workflow Server
APIs
The workflow scrver APls provide the follewing func-
tions:

Initiate a workflow

Act in a workflow

Bind process data

Get hound process data

Get field attributes

Gel Workflow Status

Get Available acts

Get Available Business Processes

Get Workflows in progress and pending actions

The STF transaction set is designed to facilitate the
invocation of workBow server API functions and to return
status reports. Workflow server API functions to STF trans-
action mapping is shown in Table 2. Descriptions of the
specified workflow server APIs may be found in co-pending
U.S. application Scr. No. 08/014,796 filed Feb. 8, 1993,

TABLE 2

STF Transaction
(Transaction Keyword)

AWS APIs called by STF Processor
and their purposes

Initialising a
Business Process
(InitBP)

BeginTransaction
AWSTBEGINTRANSACTION ()
Initialise Business Process
AWSTINITBP ()

Bind Application Data to the BP
AWSTBINDAPFPDATA ()

End Transaction
AWSTENDTRANSACTION ()
BeginTransaction
AWSTBEGINTRANSACTION ()
Initialise workflow
AWSTINITWF ()

Bind Applicalion Data to the WF
AWSTBINDAPPDATA ()

End Transaction
AWSTENDTRANSACTION ()
BeginTransaction
AWSTBEGINTRANSACTION ()
Take an Act in the WF
AWSTACTINWF ()

Guery the Status of the Act
AWSTACTSTATUSQUERY ()
Bind Application Darta to the WF or
BP

AWSTBINDAFPDATA ()

End Transaction
AWSTENDTRANSACTION ()
BeginTransaction
AWSTBEGINTRANSACTION ()
Bind Application Data Lo the WF or
BP

AWSTBINDAPPDATA ()

End Transaction
AWSTENDTRANSACTION ()
Gel the status and dates of the WF
AWSTSTATUS ()

Gel the number of available acls
AWSTNUMAVAILABLEACTS ()
Get the available acts
AWSTAVAILABLEACTS ()

Get the number of App data
structures
AWSTGETNUMAPPDATA ()

Get the App data bound of the WF
AWSTGETAPFDATA ()

Get the moment specific App Data
of the WF
AWSTGETAPPDATAFIE].DATTRIBUTES ()
Get the Number of Available BPs
tor specified identity

[nitialise a Workflow
(InitWE)

Take an Act in a WF
(Act)

Bind Applicution dala
to a Workflow
(Bind Data)

Gel the status of 2
Workflow
(GelWFStatus)

Get Available Business
Processes

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 15 of 38 PagelD# 93

6,058,413

11

TABIE 2-continued

STF Transaction
(Transaction Keyword)

AWS APIs called by STF Processor
and their purposes

(GetAvailahleBPs) AWSTNUMAVAIT ABLEBP ()
Get the Available BPs for
specified identity
AWSTAVAILABLEBP ()

Query for the number of Pending
WFs

AWSTNUMQUERYWF ()

Gel the Pending WT's
AWSTQUERYWF ()

Poll STFQ [or Notilications
AWSTPOLLSTFQUELIE ()

Get the status and dates of the WF
AWSTSTATUS ()

Get the number of available acts
AWSTNUMAVAILABLEACTS ()
Gel the available acts
AWSTAVAILABLEACTS ()

Get the number of App data
structurcs
AWSTGETNUMAPPDATA ()

Get the App data bound of the WF
AWSTGETAPPDATA ()

Get the moment specific App Data
of the WF
AWSTGETAPPDATAFIELDATTRIBUTES ()

Geet the Workflows
wherc action is
pending)
(GetPendingActions)

Nolificalion generated
by Workflow Processor
(ReturnWFStatus)

In the case of a message type of interface, both the STF
processor and the Workflow Enabled Application (WEA)
read (write) messages from (intlo) predefined message
gueues (ie., directories). Similarly, in a database type of
interface they read/write records of a shared database. The
STF processor is constantly servicing requests from a WEA.
The interface of STF processor with the WEA and the server
in both these cases is asynchronous, However, in the case of
a IPC based interface, the interaction between WEA and the
STF processor is synchronous.

Each type of STF processor is a scparate cxecutable
(EXE). When installing the STF processor, its ID (name) is
registered in the server via the workflow server manager
module.

To provide the necessary functionality, an STT' processor
deals with these different requirements through creation of a
base Transporter class. Three subclasses are derived from
the Transporter for: Msg, Database, and IPC. From Msg,
further subclasses can be derived for the varicus messaging
platforms supported, such as MHS, VIM or MAPL. From
[atabase, a subclass such as for SQL can be derived. From
IPC, subclasses can be derived for environments such as
APPC. FIG. 3 shows the interrelation of these classes in the
cases of incoming and cutgoing transactions.

STF Transaction Definitions
InitBP

This transaction is used to initializc a busincss proccss
and the primary workllow associated with the business
process. To initialize a business process, InitBP needs the
following parameters:
minimal transaction parameters:

STF Transaction ID

Business Process Name

Identity
extended set parameters:

Customer Name

Performer Name

CompletionDate

Response Date

initiate Date

Organization Roles to Identity mappings for the business
process as well as the primary workflow.

10

25

30

35

40

45

50

55

60

65

12

BoundData

The STF processor makes the workow server API call to
initiate the business process and primary workflow. The
workflow name of the primary workflow need not be pro-
vided by the WEA. Both the Business Process Transaction
ID and the workflow name (of the primary workflow) are
returned to the WEA by the STF processor. If there was an
error, it is returned to the WEA.
[nitWE

‘This transaction is used to initialize a workflow (other
than the primary workflow). InitWF needs the following
parametcrs:
minimal (ransaction parameters:

Business Process Transaction [D

Workflow name

Identity
exiended sel parameters:

Customer Name

Performer Name

Completion Date

Reply Date

Organization Roles to ldentity mapping for the workflow

BoundData
Act

This transaction specifics an Act to take in a workflow in
a business process. In the case of the Act Transaction, the
following parameters need to be passed:
minimal transaction parameters:

STF Transaction 1D

Business Process Transaction ID

Workflow Name

Act to take

Identity
cxtended set parameters:

Completion Date

Reply Date

BoundData

If the Completion and Reply dates are not specified then
the default values for that workflow are assumed by the
server. If there is any process data that the WEA needs to
bind to the business process or workflow instance then the
name, type and value of the bound data can also be passed
along with the Act transaction. The Act Transaction returns
whether the Act transaction has been logged successfully in
the Transaction database or not.
Bind Data

This transaction is to bind dala to a workflow or a business
process. In the case of the Bind data Transaction the fol-
lowing parameters need to be passed:
minimal transaction parameters:

STF Transaction IT)

Business Process Transaction I

Identity

Data to be bound to the business process or workflow
instance,
extended sel parameters:

Workflow Name

The Bind Data Transaction returns status as to whether the
application data has been bound to the business process or
workflow instance successfully or not.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 16 of 38 PagelD# 94

6,058,413

13
Get Workflow Stalus

This transaction is used 1o retrieve information related to
a workflow instance. This information includes:

WEA data bound to the workflow instance.

List of bound data field names and attributes, when
requested.

The status of the workflow instance.

The acts available in the workflow for the role of the
specified identity.

The Get Workflow Status Transaction nceds the following
parameters to be passed:
minimal transaction parameters:

STF Transaction 1D

Business Pracess Transaction 1T}

Workflow Name

Identity

Worktlow Role of the Identity
extended set parameters:

Act or State Flag(Act or State) for bound data

Act or State value for bound data

Return Bound Data Flag(YES or NO)

If the extended parameter, Bound Pata (Boolean) is not
specitied then its default value is YES and bound data fields
and atiributes are returned to WEA.

The Get Workflow Status Transaction returns the following:

Bound Data

Status String

Completion and Reply dates

List of available acts for the Identity

WEF stalus for Act or State
Get Pending Actions

This transaction is used to retrieve Information about
workflows for an Identity having an Organization Rale from
the set of instantiated business processes with the specified
business process name, which fall into the specificd time slot
between the start date and end date. This information
includes, for each workflow, BP Name and 1D, Workflow
Name and ID, Customer ID, Performer 1D, Completion and
Reply Dates, Status and form name. Essentially, it is the lisi
of workflows where an action is pending.

The Get Pending Actions Transaction needs the following
parameters to be passed:
minimal transaction paramelers:

STF Transaction 1D

Identity

Workflow Role of the Identity
extended set parameters:

Organization Role

Business Process Name

Start Date

End Date

If Organization Role is absent, then information about
workflows for the Identity in all valid Organization Roles
from the set of instantialed business processes with the
specified business process name is returned. If Business
Process name 1s absent, then information about workflows
for the Identity in all valid Organization Roles from the
complete set of instantiated business processes is retumed.
If the Start Date and End Date are absent then the time slot
fer the required information will span the entire database.

This transaction returns a list of workflows which
includes:

Business Process Name

Business Process 1T

Workflow Name

Customer Name

Performer Name

10

20

25

30

35

40

45

55

50

65

14
Completion Date
Reply Dates

Status string
Get Available Business Processes
This transaction is used 1o get the list of business pro-
cesses that the specified Identity with a specific Organization
role can initiate. The Get Available Business Processes
Transaction needs the following parameters to be passed:
minimal transaction parameters:
STF Transaction 11>
Identity
extended set parameters:
Business Process Status{Active or Inactive)
This transaction returns a list of business processes avail-
able for the Identity.
ReturnWFEStatus
This transaction is generated by the workilow processor
whencver workflow participants need to be informed about
the workflow status. The STF processor polls the workflow
processor continuously for any of the Notification events. If
it finds one, it calls the Server APIs to get the workflow
status (exactly similar to the GetWFStatus Transaction) and
send all the workflow information to the participant.
‘This transaction is generated by the workflow processor
and hence requires no parameters from the WEA.
The ReturnWFStatus Transaction returns the following:
Notification string
Notification Event
Status String
Completion and Reply dates
List of available acts for the participant
Bound Data
STF Transaction Representation in a Messaging Enviren-
ment
The following describes the STF transaction representa-
tion in a messaging environment. The STF transaction
travels as an attachment to the message. In a messaging
environment, an STF transaction has the following format.
SIGNATURE
WORKFLOW DATA
The signature and addressing information, together consti-
tute the STF Transaction Envelope.
Signature
Each STF Transaction starts with the Signature. It could be
a line containing the following:
STFMHS-01
Workflow Data
This includes the STF type, STF instance, workflow
participants, workflow type, transaction type, start date,
expecled and/or requested dates and completion dates,
workflow status etc.
STF Keyword Format
The STF keyword format in a messaging environment
consists of four fields in the following format.
<Keyword (field name)><delimiter><Iield
value><tlerminator>
Keyword (field name)
See Table 3 below.
Delimiter
The delimiter is a character such as a *:” used to separate
the field name and the field value.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 17 of 38 PagelD# 95

6,058,413
15 16
Field value A sample STF transaction in a2 messaging environment
The syntax and semantics of the field value varies and will would be as follows:
depend on the field. The following fields have a specific
format in which data is to be sent. TABLE 3
Sent by WEA to STF Processor 5
Date SIGNATURE STFMHS-01
OrgRole o Identity WORKFLOW DATA STFTYPE:GetWFStatus
BoundData STEID:10002
Sent by STF Pracessor to WEA WEFNAME PrintPaySlips
Acls 10 BPID:10202
IDENTITY:Mani-ID
Status ACTORSTATE:Act
BoundData ACTSTATE:Request
Business Process List
Workflow List .
Terminator 15 STF Transaction Keyword Data Formats
The terminator consists of the carriage return—Tline feed The following describes the STF transaction keyword
pair <CR><LF>, data formats which are medium independent.
Description, Data Type, Format and Valid
STF Keyword Values
ACT Deescription: Act to be taken
Data type and format: string of up to 64
characters
Valid values:
Request, Offer, Accept_CounterOffer,
Accept__Offer, Agree, Cancel, Counter,
CounterOffer, Counter__with___request,
Declare__Completion,
Declare_ Dissatisfaction,
Declare_Satisfaction, Decline_Reqguest,
Deceline_ Offer, Decline_ CounterOffer,
Revoke
ACTS Description: List of Acts with their

canonical and English names
Data type and format:
Canonical name of Act, English Name of
the act, . ..
Where
Canonical Name of the Act - String of up
10 64 characters
English Name of the Act - String of up to
64 characters

ACTORSTATE Description: Act or State flag for which
workflow status has been requested
Dala type and {ormat: String
Valid values:
Act, State. Default is Act

ACTSTATE Descaiption: Act or State value
Data type and format: String
Valid values for Act:
Request_ Offer, Accept__CounterOffer,
Accept, Offer, Agree, Cancel, Counler,
CounterOffer, Counter_with__request,
Declare__Completion,
Declarc_Dissatisfaction,
Declare_Satisfaction, Decline__Request,
Decline__Offer, Decline_ CounlerOffer, or
Revoke
Valid values for State:
[nactive, Initial, Request, Offe;,
Recounter, OCounter, Agreement,
Completion, Satisfaction, Cancel,
Decline, or Revoke

BOUNDDATA Description: Applicalion data associated
with a workflow
Data type and format: Bounddata format to
be sent by WEA to STT Processor:
BDfieldName, BDfieldValue; BDficldName,
BDficldValue
where,
BDFieldName - string of up to 64
characlers
BDficldValue - string of up to 255
characters.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11

6,058,413
17

-continued

BPTID

BPLIST

BPNAME

BPSTATUS

CDTIME

COMMENT

CUSTOMERID

Each hounddata field is separated by
comma and items are separaled by
semicolons. The last item need not

contain a semicoton. All the fields in
BoundData are mandatory and no blank
values are allowed.

Dala type and format: Bounddata format to
be scnt by STF Processor to WEA
BDfieldName, BDfieldValue, AttributeFlag;

where,

BDFieldName - string of up 1o 64
characlers

BDlieldValue - siring of up lo 235
characters.

AttributeFlag - string of 2 digits
specifving Adribute

Attribute Flag Values

0 - Read Only

1 - Hidden

2 - MusIFill

3 - Editable

4 - Reserved

5 - Reserved

Description: Business Process Transaction
D returned by workflow server and is
subsequently used by WEA for queries.
Data type and formal: String of up to 64
characters

Description: Business Process list sent

by Workflow Processor

Data type and format: list of Business
process names and IDs

BPNAME; BPTID, BENAME, BPTID, . . .
where

BPNAME Business Process Name of String
up to 64 characters

BPTID - Business Process Transaciion 1D
of String up to 64 characters

Description: Business Process Name

Data type and format: String of up to 64
characters

Description: Business Process siatus
required (active or inactive)

Data type and format: String

Valid values:

Active, or [nactive

Description: Customer request completion
date and time

Data type and format: Date formats

1. mm dd-yyyy HH:MM:SS

2. MMM dd yyyy HH:MM:83

3. MMMMMMMM dd yyyy HHMM:SS
where

mm - Maonth (01-12)

MMM - Month {Jan-Dec)
MMMMMMMM - - Month Name (Tapuary —
December)

dd - Day (0-31)

yyyy - Year (1970-200x)

HH - Hour (0-23)

MM - Minute (0-5%)

S8 - Second (0--59) This is optional

All the fields in the date and time are
mandatory excepl the seconds field The
delimiters separating date fields can be
blank, hyphen, forward slash,

or dot ().

Examples of Date and Time for November
the 20th 1992 al 10 am can be specified
ns;

November-20-1592 10:00,

Nov-20-1992 10:00:00, or

11-20-1993 10:00

Description: Comment associated with an
STF Transaction

Data type and tormat: String of up to 235
characlers

Description: Workflow customer Name
Dala type and format: Customer name.

Page 18 of 38 PagelD# 96

18

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11

6,058,413
19

-continued

ENDDTIME

FRROR

ERRORMSG

FORMID

IDENTITY

IDTIME

NOTIFICATION

NOTIFICTYPE

OBSERVERID

ORGZIDENTITY

ORGROLE

PENDINGACTIONS

String of up to 64 characters

Description: End of datc and time range
for Get Pending Action

Data type and format: Date format (as in
CDTIME)

Description: Error code returned by
Workflow Processer to an STF Transaction
Data type and format: String of digits up
to & characters

Description: Ertor message coresponding
to ERROR

Data type and format: String of up to

1024 charclers

Description: ID for form in WF

definition, returned as part of Bound

Dala

Dala type and format: String of up to 64
characters

Description: Identily wha is participant

in the Workflow

Data type and format: String of up to 64
characters

Description: Initiate lime of a Business
Process or Workflow

Data lype and format: Date format (as in
CDTIME)

Description: Notification string returned

by Workflow Processor to WEA

Dalz type and format: String of up to 255
characters specifying the Notificalion
string

Possible strings are

Performer responss past due, Performer
completion past due, Performer completion
coming due, Customer Response past due,
Act taken.

Description: Notification Type returned

by the Workflow Processor to the WEA
Data type and format: String of 1 digit
Notification event lypes

0 - Follow Up

1 - Follow Up

2 - Reminder

3 - Follow Up

4 - Act

Description: Name of observer in workflow
Data type and formalt: String of up to 64
characlers

Description: Organizational Rele to
Identity Mapping for the workflow

Data type and formal: Organization roles
and identities list
ORGROLE=IDENTITY;CRGROLE=IDENTITY; . . .
where

ORGROLE - String of up lo 64 characiers
IDENTITY - Siring of up to 64 characiers
All the fiekls in ORG2IDENTITY are
mandatory and no blank valucs are
allowed.

Description: Organizational Role of Lhe
Identity

Data type and format: String of up to 64
characters

Description: List of Workflows where some
act is pending

Dala Lype and format: List of Workflows
where actions are pending

BPNAME, BPTId, WFNAME, CUSTOMER,
PERFORMER, COMPLETIONDATE, REPLYDATE,
STATUS; . ..

where

BPNAME - Business Process Name of String
up to 64 characters

BPTId - Business Process Transaction [D
of String up to 64 characters

WENAME - Workflow Name of String up to 64
characters

CUSTOMER - Customer Name of Stiing up to
64 charnacters

Page 19 of 38 PagelD# 97

20

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11

6,058,413
21

-continued

PERFORMERID

RDTIME

RTNBOUNDDATA

RTNSTATUS

STARIDTIME

STAIUS

STFID

STFTYPE

STFVER

WEFNAME

PERFORMER - Performer Name of String up
to 64 characters

COMPLETIONDATE - Completion Date (as
inCDTIME)

REPLYDATE - Reply Date (as in CDTIME)
STATUS - Status string

Description: Name of Performer in the
Workflow

Data type and format: Performer Name.
String of up Lo 64 characters

Description: Date and Time by which a
participant asks for a response to his

act,

Dala type and format: Date format {as in
CDTIME)

Description: Flag indicating whether to
return application datn to WEA

Data type and format: String

Valid values:

Yes, No. Other than 'No' will be taken as
"Yes' and Default is Yes

Description: Flag indicating whether to
return status to WEA

Data type and format: String

Valid values:

¥es, No. Other than 'No' will be taken as
"Yes' and Defauit is Yes

Description: Start date for Pending
Actions

Data type and format: Date format (as in
CUTIME)

Descriplion: Status of Workfow

Data type and format: Workflow status
string format

WFSlatus , Completion Datel, Reply Datel,
Completion Date2, Reply Date2
WEStatus - A string of up to 64
characters containing the WF status

string

Possible values are,

[nactive, Inilial, Request, Offer,
Recounter, Counter, Agreement,
Completion, Satisfaction, Cancel,
Decline, or Revoke

Completion date} - Complelion requested
by Customer (Completion due for
Performer) with format as in COTIME
Reply Datel - Reply due to Performer from
Customer {Reply due to customer from
Performer) with format as in CDTIME
Completion Date2 - Completion due by
Performer {(Completion requested by
Customer [rom Performer) with format as
in CDTIME

Reply Datel - Reply due by Performer Lo
Customer (Reply due by Customer from
Performer) with format as in CDTIME
Descriplion: STF Transaction [} specified

“by WEA

Data type and formal: String of up Lo 255
charagters

Description: STF Transaction Type

Data type and format: String of up to 64
characters

Description: STF Transaction Version
Data type and format: String of up to 64
characters

Description: Workflow Name

Data type and format: String of up to 64
characters

Page 20 of 38 PagelD# 98

22

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11

6,058,413
-continued

WEFROLE Description: Tdentity's role in workflow

Dala type and format: String of up to 64

characters

Valid Values:

Customer, Peeformer, Obscrver

Transaction types (STEFIYFPE)
Type Idertifier
TnitBP INITBP
TnitwWF INITWE
Act ACT
Bind Data BINDDATA
Get Workflow Starus GETWFESTATUS
Get Available Business GETAVAILBPROCS
Processes
Get Pending Actions GETPENDINGACTIONS
Relurn WF Status RETWFSTATUS

20
The STT transaction is placed in an attachment file. This
file needs to be specified in the attachment IPM Header. An -continued
T wing SMI" headers

STI processar mal‘(?s use OF l.hﬁ f(l)llﬂ R g inf o ORG2DENTITY:Mani-ID=Ac.Officer; Ted-[D=Ac. Mgr
from the MHS Message Lo retrieve addressing inlormation s BOUNDDATAGRS-BAS,40.00; EMPNAME, Btat

for the STF Transacticn. Other header information is

ignored by the STF Processor.

From

To

Attachment

The following are the complete STF transactions as received
by a STF processor from a WEA via MHS. It also
illustrates the STF Transaction sent by STF Processor in
reply to the WEA via MHS,

Example of MHS message header file received (from WEA)
by STF Processor through MHS

MHS Message

SMF-70

001From: Mani@ltlosi2
001To: STFPROC1GHostl
200Attachment: FILE1.STEF
... (other info put by MHS |
but ignered by STF Processor)

Example of MHS message header created by the STF
Processor in response 1o the above header file (To WEA)

SMF Message

SMF-70

001From: STFPROC1@Hos1

001To: Mani@Host2

200Attachment: STEOO000

InitBP

Attachment file conlaining [nitBP Transaction

COMMENT: This is an example of InilBP
SIFVER:STFMHS-01
STFTYPE:InitBP
BPNAME:STAFFPAYROLL
IDENTITY: Mani-[D
STFID:10401
CUSTOMERID:Lakshman-1D
PERFORMERID:Manoj-[D
CDTIME:01-02-1993 17:00
RDTIME:01-02-1993 09:00
IDTIME:01-02-1993 17:00

30

as

40

45

55

60

65

RTNSTATUS:YES

The corresponding workflow server API Calls would be:
AWSTBeginTransaction()

AWSTInitBR();

AWSTBindAppData();

AWSTEndTransaction()

The values returned by the workflow server APIs will be
sent to the WEA as Return Status transaction (if WEA had
set RINSTATUS 1w YES. By default, STF Processor
assumes RINSTATUS as YES). ERROR keyword is set to
0if there was no error processing the Transaction. Otherwise
ERROR will be set to a value and the error message
corresponding to the ERROR will be sent in ERRORMSG.

Altachment file containing Return$tatus to [nitBP
Transaction:

STFTYPE:RelurnStalus

STFID:10401

BPID:10000

WFNAME FixBugs

ERROR:00000000
ERRORMSG:Transaction with workflow
server Is sucoessful

Suppose that an error occurred in the TnitBP Transaction
that BPNAME keyword was not found, then the values
returned by the workflow server APIs will be sent to the
WEA as Return Status transaction (if WEA had set
RINSTATUS to YES. By deflault, STF Processor assumes
RTNSTATUS as YES).

Altachment file containing ReturnStatus to InitBP Transaction
for Error:

STFIYPE:ReturnStatus

STFID 10401

ERROR:00000197

ERRORMSG:Could not find keyword(s):

Page 21 of 38 PagelD# 99

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 22 of 38 PagelD# 100

6,058,413

25

-continued

26

-continued

BPNAME.
InitWF
Attachment file containing [nitWF Transaclion

STFVER:STFMHS-01
STFTYPE:InitWF

STFID:10402

BPID:10000
WEFNAME:PrintPaySlips
IDENTITY:Mani-ID
CUSTOMERID:Lakshman-1D
PERFORMERID:Manoj-il>
CDTIME:02-01-1993 17:00
RDTIME :Feb-01-1993 17:00
[DTIME February-01-1993 10:00
CORGZDENTITY:Manoj-1D=Pgmr; Lakshman-[D=Analyst
RTNSTATUS:YES

The corresponding workflow server API calls would be:
AWSTBegin Transaction()

AWSTInitWE();

AWSTBind AppData();

AWSTEndTransaction()

The values returned by the workllow server APIs will be
sent to the WEA as Retumn Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES).

Attachment file containing ReturnStatus to InitWF Transaction

STFTYPE:ReturnStatus

STFID:10401

ERROR:00000000
ERRORMSG:Transaction with workflow
server is sbecessful

Act

Altachment file containing Act Transaction

STFVER:STFMHS-01
STFTYPE:Act

BPID: 10000

STFID:10403
WEFNAME:PrintPaySlips
ACT:Agree

IDENTITY: Mani-ID
CDTIME:02-01-1993 17:00
RIYTIME:02-01-1993 17:00
BOUNDDATA:GRS-BASIC, 3000.00; GR7-BASBIC, 3500.00
RTNSTATUS:YES

The corresponding workflow server API calls would be:
AWSTBeginTransaction()

AWSTACtInWEF();

AWSTActStatusQuery();

AWSTBindAppData();

AWSTEndTransaction()

The values returned by the workllow server APIs will be
sent 10 the WEA as Return Status transaction (if WEA had
set RINSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES).

Attachmenl file containing ReturnSlatus to Act Transaction

STFTYPE:ReturnStatug

STFID:10403

ERROR:00000000
ERRORMSG:Transaction with workfow

10

2

i}
n

30

35

40

45

50

55

60

65

server is snocessful
Bind Data
Altachment file containing Bind Data Transaction

STFVER:STFMIIS-01

STFTYPE:BindData

BPID:10000

STFID:10407

WEFNAME: PrintPaySlips

[DENTITY Muni-ID

RINSTAIUS:YES

BOUNDDATA:GRE-BASIC, 3000.00; GR7-BASIC, 3500.00;
GRG-BASIC, 4000.00;FAYDATE, 02-01-1993 17:.00

‘The corresponding workflow server API call for the Bind

Data Transaction would be:

AWSTBeginTransaction()
AWSTBindAppData();
AWSTEndTransaction()

The values returned by the workflow server APTs will be
sent 10 the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RINSTATUS as YLS).

Attachment file containing ReturnStatus to Bind Data
Transaction

STFTYPE:ReturnStatus

STHID:104407

ERROR:00000000

ERRORMSG: Transaction with workflow

server is successful

Get Workflow Status

Attachment file containing Get Workflow Status Transaction

STFVER:STFMHS-01
TIME:Scp-24-1992 10:40
STFTYPE:GetWFStatus
BPID: 100000
WINAME:PrinlPaySlips
STFID:10404

WFROLE Customer
IDENTITY:Mani-ID
RTNSTATUS:YES
RINBOUNDDATA:YES
ACTORSTATE: Act
ACTSTATE:Agree

Since this transaction is used to retrieve all information
related 1o a workflow instance, it maps 10 several workflow
server APls
The corresponding workAow server API Calls would be;
AWSTStatus();

AWSTAvailable Acts();
AWSTGetAppData();

The values returned by the workflow server APIs will be
sent to the WEA as Return Status transaction (if WEA had
sel RINSTATUS w0 YES. By default, STF Processor
assumes RTNSTATUS as YES). I RTNBOUNDDATA is set
to YES, then BoundData is returned to the WEA. The Bound
Data atiribute sent by workflow server is the “moment”
attribute flag of a workflow if the Bound data is required for
a slate.

Attachment file containing RelurnStatus to Get Workflow
Status Transaction

Case 1:11-cv-00678-CMH -TRJ

Document 1-2 Filed 06/23/11 Page 23 of 38 PagelD# 101

6,058,413

27

-continued

STFTYPE: ReturnStatus

STFID: 10404

STATUS: Completed, 02-01-1993 17:00, 02-01-1993
17:00, 02-01-1993 1700; 02-01-1993 17:00

ACTS: Agree, PrintSlips

FORMID: SAMPLEFORM

BOUNDDATA: GR3-BASIC, 3000,00, 01, GR7-BASIC,
3500.00, 01; GR6-BASIC, 4000.00, D1

ERROR: 00006000

ERRORMSG: Transaction with workflow server is
successful

Note: STAIUS and ACT'S keyword format
STAI'US: WEStatus, Completion Datel, Reply Datel, Complction
Dute2, Reply Dale2

where,

WFStatus siring Workllow slalus string

(Inactive, Initial, Request, Offer, Recounter,
Counter, Agreement, Completion, Satisfaction,
Cancel, Decling, or Revoke)

Completion requested by Customer
(Completion due for Performer)

Reply due to Performer from Customer
{Reply due to customer from Performer)
Completion due by Performer

(Completion requested by

Customer frem Performer)

Reply due by Performer from Customer
(Reply due by Customer from Performer}

Completion Datel
Reply Datel

Completion Date2

Reply Date2

ACTS: Act Type, Act Name
where,

Act Type string Act Type string (Request, Offer,
Accept__CounterOffer, Accept_Offer,
Agree, Cancel, Counter, CounterQOffer,
Counter_with__request,
Declare _Completion,
Declare_ Dissatisfaction,
Declare_satisfaction, Decline_ Request,
Decline_ Offer, Decline CounterOffer,
Revoke, or Null)

Act Name Act Name string.

Get Available Business Processes
Attachment file containing Get Available Business Processes
Transaction

STFVER: STFMHS-01
STFTYPE: GetAvailablcBPs
STFID: 10405

INDENTITY: Mani-IN
BPFSTATUS: Active

The Get Available Business Processes returns the list of
Business Processes (hat the identity (in the specific role) can
initiate. The BPSTATUS is an optional parameter which
specifies whether active or inactive (all) BPs are required by
the WEA.

The corresponding workflow server API Call would be:
AWSTAvailableBP();

The values returned by the workflow server APIs will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RINSTAIUS as YES)

Attachment file containing ReturnStatus to Get Available BPs
Transaction

STFTYPE:RzturnStats
STFID:10405

10

15

25

30

40

45

50

55

60

65

28

-continued

BPLIST:BugReporingSystem, 1000;

BugReportingSystem, 10007

ERROR:00000000

ERRORMSG:Transaction wilth workllow server is
successful

Get Pending Actions

Allachment file containing Get Pending Actions Transaction

STHFVER:STFMHS-01

STFID: 10406
STFTYPE:GetPendingActions
WEFROLE:Performer
ORGROLE:Ac. Officer
BPNAME:STAFFFAYROLL
IDENTITY:Mani-1D
STARTDTIME:02-01-1993 17:00
ENDDTIME:02-01-1993 17:00
RTNSTATUS:YES

The Get Pending Actions returns informaltion about the
workflows for the specificd identity (having the specific
Organization role) from the set of instantiated business
processes with the specified Business Process name.

The corresponding workflow server API Call would be:
AWSTQueryWF();

The values returned by the workflow server APIs will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS 1o YES. By default, STF Processor
assumes RINSTATUS as YES)

Attachment file containing ReturnStatus to Gel Pending
Actions Transaction

STFTYPE:ReturnStalus

STFID:10405

PENDINGACTIONS WFNAMEL; WFNAME2
ERROR:N0000000

ERRORMSG:Transaction with workflow server is
successful

RelurnWFSLalus

Attachment file containing ReturnWFSlatus Transaction

None

This Transaction is generated hy the Workllow Processor
whenever the Workflow participants are needed to be
informed about the Workflow status. The STF Processor will
poll the Workflow Processor continuously for any of the
Notification events. If it finds one, it calls the Server APIs to
get the Workflow Status (exactly similar to the GetWFStatus
Transaction) and send all the workflow information to the
participant.

The corresponding workflow server API Calls would be:
AWSTBeginTransaction()

AWSPolISTFQueuel)

AWSTStatus();

AWSTAvailable Acts();

AWSTGetAppData();

AWSTLnd Transaction()

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 24 of 38 PagelD# 102

29

6,058,413

The values returned by the workflow server APls will be
sent 1o the WEA as Notification transaction.

Attachment file containing ReturnWFStatus Transaction

STFIYPE:RelurnWEFStatus
NOTEFICATION:Performer Response Past Duc

NOTIFICTYPE:1

STATUS:Completed,2-01-1993 17:00,02-01-1993
17:00,02-01-1993 17:00,02-01-1993 17:00

ACTS:Agree, PrintSlips

FORMID:SAMPLEFORM
BOUNDDATA:GRE BASIC, 3000.00,01; GR7-BASIC,
3500.00,01; GR6-BASIC, 4000.00,01

10

15

STF Transaction Representation in a Database Environment 26

In the case of a shared database environment, the STF
transaction formal is a set ol tables,

Each table has a record structure as follows:

25
Table Name Description
Acl Data required Act
Acts List of canonical acts and their 30
English names
BindData Binding Application specific Dala to
Workflow
BoundDala Application specific Bound Data
BusinessProcessList List of Available Business Processes
Error Error information returned by STF a5
Processor to the WEA
GetAvailableBPs Get Available Transactions
GetPendingActs Gret Pending Actions 'I'ransaction
GetWFStatus Get Workflow Status Transaction
InitBP Initialize Business Process
Transaction
InitWE Initialize Workflow Transaction 40
Org2ldentity Organizational Role to [dentity
Mapping
PendingActions List of Workflows where some act is
pending
ReturnWFstatus Return Workflow Status
(Notification) Transaction 45

WorkflowStatus

Workflow Status data returned by
GetWFStatns and ReturnWEStatus

Each table consists of a set of columns in a relational

table. The first field in the table is the Transaction 1D} which

is the primary key for the table—its value can never be void.
Other fields may contain void values depending upon
whether those fields are of the minimal set or the extended

s¢t of parameters of the respective STF transaction. 5
An alternative implementation of the STF transaction
representalion in a database environment would consist of
three tables as follows:
60
Keyword Index Table
STF Keyword Index
ACT 1 65
ACTS 2

30

-continued

ACTORSTATE 3

Incoming Transactions

STF Trans [D Keyword Value
Oulgoing Transactions
STF Trans ID Keywaord Value

where the STF Trans ID column contains STF transaction

identification, the keyword column conlains a keyword

index carresponding to the keyword index table; and the

value column contains one of the valid values from the STF

Transaction Keyword Data Formats table.

STT Transaction Representation in an Inter-Process Com-
munication Environment

The STF transaction in an IPC environmenl is represented
by a set of parameters in a remote procedure call, in a
manner similar to the parameters of a workflow API call as
described in U S application Ser. No. 08/014,796 filed Feb.
8, 1993,

STF Processors

The following is a description of the three types of STF
processors needed for messaging, shared database and inter-
process communication. Details for the messaging type are
explained by way of an example using MHS and VIM.
Details needed for the shared database type by way of
examples using SQL. Details for the inter-process commu-
nication type should be apparent to persons skilled in the art
from this description.

In the preferred embodiment as set forth below, the
invented system is implemented using the Model, View,
Class (MVC) paradigm of object oriented programming.
Transporter Module

The transperter module of an STF processor handles the
reception of inputs arriving via messaging, shared database
or IPC and the preparation of outputs via messaging, shared
database or IPC. The transporier recognizes, reads and
writes entire transactions. The transporter accesses al! items
of bound data or transaction data via kevword entries. Client
inputfoutput content is required to be formatted as keyword,
value(s), flags for each item of a transaction or bound data.

The transporter class provides basic interaction with the
WEA software. In the case of MHS, for example, the
transporier class provides the messaging interface. It gets

0 and puts messages and passes them to the TxParser, which

is a class that understands and reads the MHS message and
extracts from it the STF transaction. The transporter also
receives the message from the TxFormatter which 1s a class
that constructs the message in MHS format. When a devel-
oper creates a new STF processor, it is necessary to derive
from the subclasses of the transporter class an interface to
the required transport medium to the STF processor.

The TxProcessor and STF_Transaction (STF_Tx)
classes form the core of the STF processor. The TxProcessor
is the controlling class that keeps track of transactions
queued up to be done. 'The STI"_Tx creates all the objects
which between them contain all the methods necessary to
interface to the workflow server.

Since the STF processor converts a WLEA-formatted trans-
action into a workflow server-lormatied transaction, the
transaction classes center the conversion process and pro-
vide methods to both sides of the conversion.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 25 of 38 PagelD# 103

6,058,413

31

Transaction Processor

The TxProcessor is the central controller class in STF
Processor. It has pointers to Error, INIFile, Transporter,
TxParser, TxFormatter and STF__Tx base classes in the STF

32

-continued

STF EXE file name
Error log file name

szSTFExeFilName
szSTFEnFiiName

Processor. FIG. 6 illustrates the generic class hicrarchy 3 o Mt
. . unhc elhoads
diagram of a STF processor and how the classes in STF _—
processors are linked. Method Name Method Description
1e85 methods to process input and output
TXPI'O-(,CS!;OI‘ has P P . . P INIFilc(PSZ pszINIFilName) Conslructor updales the INI
transactions. The TxProcessor constructor instantiates g file name szINIFilName
TransMsgMHS (for a messaging environment based on USHORT uFillINIData() r;'dds lhef 1INI 11:116 and fills
. the INI file information in
MHS‘), TxPamer and TxFormatter. . the attributes
Within the TxProcessor method, 1o process input BOOL bParseINILinc(PSZ parses [NI file line using
Transactions, a parser methed to get input from Transporter pszLinebuf, PESZ artay of INI keywords and
. led which loads the i T 15 ppszitemNames, PSZ pszValue, returns value and index
is cailed which loads the input trapsa_c 100. USHORT *pulndex) agsociated with the INI file
Next, STF__Tx is instantiated in inbound or outbound keyword
mode depending upon TXProcessor method for processing PSZ pszGetINIFilName() :i“:;‘l‘;llg{;‘g;:ame stored
input or output Transactions. PSZ pszGetSTFProeiD() returns the STF Processor
Pointers to Transporter, TxParser and [xFormatter are ,, name stored in szSTFProclD
. : e . “ PSZ pszGetSTFExeF i Name() returns the EXE file name of
passed on to SFF_Tx privale data members through the :
- STF Processor stored in
constructor. The STF_Tx constructor then gets the Trans- szSTFExeFilName.
action Type by calling parser method for processing inbound PSZ pszGetSTFEnFilName() returns LLhec;:r_mr log file
- . name stored 1m
Transactions or calls a method for pelling STFQ for pro- < STFEnFIName.
cessing outbound Transactions. 23 PSZ pszGetSTF VariantName() returns the STF variant name
Depending upon the Transaction Type appropriate trans- stored in szSTFVariantName
action objects are instantiated which in turn process the
Bound data, Envelope data and call appropriate workflow Class name: STFTransporter
server APIs. N Class description
The return status of the workflow server APL's is handled 3 This is an abstract base class which is responsible for
by creating a return Transaction which is internally passed gething WEA inputs gnd feturming respanses o lhe. EA. T
. contains methods to interface with the external environment
over to TxFormatier for onward delivery to Transporter. . T
Cl tion is done b ing TxP , thod as well as provides methods for TxPa.rs‘cr, I'xl*orm?tter and
canup operation Is cone by calling 1 xtrocessor $Methots Envelope objects for reading and writing transactions and
to do the same. This campletes onc inbound or outbound 35 e information. The STFTransporter class contains a set of
transaction processing virtual methods which are overloaded by the methods of the
All the output transactions are processed. If there are no appropriate derived classes(STFTransMsg, STFTransDb or
oulpul transactions pending, a message is posted to process the STFTransIPC class). In the case of messaging environ-
input transactions. ment like MIIS, the STFTransporter virtual methods are
STF Processor Class Descriptions 40 replaced by the methods of the STETransMsgMHS class.
) STFIransporter accepts and passes an array of strings con-
Class Name: INIFile taining Trapsaction items, values, and flags to the TxParser.
Class Description
This is the INI file base class that handles STF Processor .
INT file loading. The INI file is created during STF Processor Super Class
installation. STF Processor will assume a default STFINI in None
the current directory. If the STFINI is not found in the g&};{;lﬁssﬁ s handline Messai) X
. . - , . ’ - ransMsg, 107 Dandling Messaging cnvircnmen
cun_"em directory, it \s_nll _be' searched in PATH envn’onmgnt STFTrarsDB for handling Database environment
variable. The INI file is similar 1o O8/2 INI files. The INI file sg STFTransIPC for handling [PC environment
will have keywords and values. Following is the content of Classes Used
the INI file in STF Processor Verl.0. o
ttributes
Altribute Name Attribute Description
55
STFProcessorName: STFPROC1 None None
ErmorLogFile: CATEMP
Super Class Public Methods
None
sub Classes Method Name Method Description
None 60
Classes Used virtual USHORT A pure virtual method which
Nong uGetInput Tx(PPSZ will be overloaded by
Attributes ppszAWESTFInputTx, USHORT* appropriate method of derived
uIT'Count, BOOL*pbMore) classes STFTransMsg,
Attribute Name Attribute Description STFTranSDB, STFransIPC.
Overloaded methods get a
szINIFilName INI file name 63 reference to array of
525TFProcID STF Precessor [D pointers to strings

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 26 of 38 PagelD# 104

6,058,413

33

-continied

34

-continucd

virtual BOOH.

bWrite WEAQutput(PPSZ
ppszFmiCutput, USHORT
uFOCount}

containing lransaction items,

valucs, flags from the WEA

input 5
A pure virmal method rhat is
overlpaded by appropriate

public methods of the derived

classes STFTransMsg,

STFTransDB, STF1ans[PC. It

creates the Transaction 10
header and posts it along
wilh the attachment file (in
case of messaging
environment) as oulput lo WEA
application. It returns
Boolean indicating success or 15
[ailure of the posting
operation. This method 13
used by formalter to send
transactions (o WEA.
virtual BOOL A pure virtual method that is
bGetlnUserInfo{PPSZ overloaded by methods of 20
ppszlnUserInfo, USHOR1™ derived classecs STFTransMsg,
pulnUICount) STFTransDB, STFTransIPC
virual BOOL A pure virtual method that is
bPutOutUserlnfo(PPSZ overloaded by appropriale
ppszOutUscrinfo, USHORFE methods of derived classes
uOutUICount) STFTransMsg, SIFIansDB,
STFTransIPC 5
virtual BOOL bDeleteTx(USHORT A virtual method that is
*uDeleteTxFlag) overloaded by appropriate
methods of derived classes.
The overloaded method marks
inputs from WEA as read. It
is called once an Input from 30
WEA is completely processed.
Class Name: STFTransMsg
Class Description 2
STFTransMsg derived class consists of a set of public =
methods which overload the appropriate methods of the
STFTransporter class to incorporate message specific fea-
tures. The STFTransMsg derived class also contains a set of
protected virtual methods which are used in defining the set
of the STFTransMsg public methods, i.c. in writing the code
of these public methods. This set of protecied virtual meth-
ods in turn is overloaded by the methods of the derived class
STFTransMsgMHS in case of messaging environment based
on MHS and by methods of STFTransMsgVIM derived
class in the case of a messaging environment based on VIM.
Super Class
STFTransporter 50
Sub Classes
STFTransMsgMHS handles MHS messaging environment
STFTransMsgVIM handles VIM messaging environment
Classes Used
None
Altributes 55
Attribute Name Attribute Description
ppszinUserlnlo inpul user info used for
storing addressing
information of inbeund
L : 60
ransactions.
uInUserInfoCount number of elements in
ppszinUserlnfo.
ppszOutUserlnfo Output user Info vsed for
addressing outhound
lransactions.
ulutUsesInfoCount number of elements in 65

ppszOutUserlnfo

Public Mcthods

Method Name

Method Description

STFTransMsg()

USHORT uGetlnputTx(PPSZ
ppszAWESTFInputlx, USHORT*
ulTCount, BOQL *pbMore)

BOOL bWriteWEAOutput(PPSZ
ppseFmtCulput, USHORT
uFOCount)

BOOL bGellnUserlnfo(PPSZ
ppselnUserlnfo, USHORT*
pInCICount)

Constructor used for
initializing private data
members of STFIransMsg class.
This method uses protected
virtual methods which are
overioaded by appraopriate
methods of STFTransMsgMHS and
STFTransMsVIM detived
classes. It gets the inbound
transaction, user information
and number of strings present
in Input transaction and user
ioformation data structures
respectively, The user
information data is stored in
its private data members.
Various arguments are
described below,

1. ppszWEASTFInpuiTx
argument receives reference
to array of pointers to
strings containing
transactions sent by WEA.
2. ulTCount specifies count
of strings in
ppszWEASTFInpultTx.

3 pMore flag indicates if
more unread input messages
are present. This flag is
useful in processing multiple
input transactions.

This method accepts
parameters for creating an
outbound transaction to be
sent to WEA. It accepts array
of pointers to strings from
which a return Transaction is
formulated (In case of
messaging environment it
creates an attachment file)
and posts the message along
with formulated

transaction (attachment file
in Mcssaging environment) as
WEA output. It makes use of
protected virtual methods
that are overloaded by the
appropriate methods of
STFTransMsgMHS and
STFTransMsgVIM derived
classes. Various arguments
are given below:

1. ppszFmtOutput argument
contains formatter output
Transaction for onward
delivery to WEA.

2, uFOCount argument
specifics number of strings
in ppszFmtOutput.

This method gets User
Information thal is stored in
ppszInUserlnfo private data
member. This is used for
addressing lhe responses to
the current transaction. The
various arguments passed are
given as under.

1. ppszInUserinfo argument
contains [nput user
information for addressing
purpose.

2. pInUICount poinls o
number of strings in
ppszUserlnfo,

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 27 of 38 PagelD# 105

6,058,413

35

-continued

36

~continued

BOOL hPutOutllserTnfo(PPSZ.
ppszOutUserInfo, USTEORT
uQutUICount)

BOOL bDeleteTx(USHORT
=uDeleteTxFlag)

~8TFTransMsg()

This method accepts user
information to be used within
transporter for addressing
outhound trapsaction, The
variols arguments arc
desciibed below:

1. ppszCuilUserInlo argument
contains array of pointers to
strings containing user
information for addressing
cutbound transaction.

2. uOuUICount specifies
number of strings in
ppszOutUserlnfo data
structure.

This method marks the inpul
messages from WEA as read
once they are processed and
deletes the memory allocated
for private data members of
STFTransMsg.

Destructor used for deleting
ppszlnUserInfo data member.

Protected Methods

Method Name

Method Description

virtual BOOL bCreate Msg(PPSZ
ppszFmtOut, USHORT
uFmtOuCount)

virtual BOOL bSetMspgHdr()

virtual BOOL bSendMeg()

virtual BOOL
bQueryNewMsp(BOOL *pbMore)

virtual BOOL bOpenMsg()

virtual BOOL
bMarkMsgRead{USHORT

This is a protected virlual
method thal is overloaded by
appropriate member functions
of STFTransMsgMHS and
STFTransMsgVIM derived
classes. [t creates an
attachment file from array of
pointers to sirings passed as
argument 1o it.

This is a protected virtual
function that will be
overloaded by bSetMsglIIdr()
methods of STFTransMsgMHS or
STFTransMsgVIM derived
classes. It creates the

message header structure from
array of pointers to string
contalning user information
like receiver name and
address as input

This is a protected virtual
function that will be
overloaded hy hSendMsg[)
methods of STFTransMsgMHS or
STFFmansMsgVIM derived
classes. [t posts the
attachment file and message
as outpul to WEA.

‘This method is overloaded by
bQueryNewMsg() method of
STFTransMsgMIIS or
STFItansMsgVIM derived
classes. [t polls for WEA
input and returns Boolean
indicating presence or

absence of WEA inpul. It as
well sets the more Aag in

case more unread messages are
present.

'This method is overloaded by
bOpenMsg() method of
STFTransMsgMIIS or
STFTransMsgVIM denived
classes. [t opens and reads

the incoming unread message
file for attachment file name
and user {pformation,

This method is overloaded by
bMarkMsgRead() functions of

25

30

35

40

45

50

35

60

65

“uDelete TxFlag);

virtual BOOT. bGetMsgliem(PPSZ

ppszlnputTx, USHORT™
pulnpmTx)

virtual BOOL bCloseMsg()

5TFTransMsgMHS or
STFTransMsgVIM derived
classes.

This method is overloaded by
bGetMsgltem() method of
STFTransMsgMHS or
STFTransMsgVIM derived
classes. It passes reference

to amray of poinlers
conlaining ilem names, values
and flags of the transaction.

It will be used by
bGetlnputTx() public method
of this class,

This method closes all the
resources opened by
bOpenMsg{) method.

Class Name: STFTransMsgMHS

Class Description

The STFTransMsg MIIS derived class consists of a set of
public methods which overload the methods of the
STFTransMsg derived class. This set of public methods are
specific to MI1IS messaging environment.

Attribute Name

Super Class
S1FIransMsg
Sub Classes
None

Classes Used
WNone
Attributes

Attribute Description

plniFile
ppszMsgHdr

uMsgHdrCount
hOutMsg[il
pszlnAttFilName
pszOutAttFilName
pszUnrcadMsgFilName
szInMsgFiiPath
szInAttFilPath
szSndMsgFilPath
szSndALFilPath
pseSUAppName
s2SMF—70] |
szFrom[]

s2Tof]

szAnachment|]

s251f

pointer to INIFile

array of pointers to store
message header.

number of elements in
ppszMsghdr

Output message file handle.
Input attachment file name
Output attached file name.
[oput Unread message file
name

Input message mail directory
path.

Input parcel
directory(attached file) path
Output message directory
path.

Outpul parce]
directory(attached filc)

path.

STF Applicaiion name.
constant char string
containing SMF signature SMF-
70

constant char string
containing SMF “From:"field.
conslanl char string
containing SMF “To:™ field.
constant char string
containing SMF “Altachment:”
field.

constanl string containing
STF keyword.

Method Name

Private Methods

Method Description

BOOL bSetPathi)

This method sets up the paths specific
to MHS messaging environment. Returns

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 28 of 38 PagelD# 106

6,058,413

37

-continued

38

-continued

PSZ pszGetMHSMV()

true if paths are set properly.

This method returns the master volume
environment variable MV necessary for
setting up the MHS environment.

Method Name

Public Methods

Method Description

STFTransMsgMHS()

virtual BOOL
bCrealeMsg(PPSZ
ppszFmtOut, USHORT
uFmiQulCount)

virtual BOOL
bSetMsgHdz()

virtual BOOL
hSendMsg()

virtual BOOL
bQueryNewMsg{BOOL
*pbMore)

virtual BOOL
bOpenMsg()

Constructor of STFTransMsgMIIS class. IL
initializes privatc data members of
STFTransMsgMHS

This creates a lemporary file from

array of pointers to strings passed by
formatter in ppszFmiOut and assigns the
uzique file name crealed to
pszOutALtFilName data member. The
steps followed by this method are given
below.

1. Create a unique file from a global
inleger variable which is appended with
STF keyword.

2. Open the file using DOS Cpen
command in non-shareable, write only
mode.

3. Writes strings from ppszFmtQOut

into file separaling Lthem with a new
line character (Ox00) 0x0A)

The procedure followed by this method
to accomplish its task is broadly
calegorized in following steps.

1. Allocate storage for ppszMsgHdr
data member.

2. Create SMF message header as array
of strings in ppszMsgHdr using
ppszCutUserlnfo and uOutUserInfoCount
for recipient (To:) fleld.

3. Assign the altachment file name
created by bCreateMsg{) method
(pszOutAttEiIName) lo Altachment fleld
of SMF header.

4. Assign the Attachment type field

of SMI° header as S1T.

5. Assign From:field of SMF to
application name given by pszStfAppName
variable.

This method creales a message file from
array of pointers to strings compiled

by bSetMsgHdr() in ppszMsgHdr data
structure in output mail directory.

‘This completes the posting operation of
SMF message in MHS environment. It
returns Boolean indicating success or
failure of the operation. The sleps
followed in this mcthod arc given
below;

1. Create a uniyue fle [rom a global
integer variable which is appended with
STF keyword.

2. Open the file using DosOpen
command in non-shareable, write only
mode.

3. Writes strings from ppszMsgHdr

into file separating them with a new
line character (0x0D Ox0A)

This method polls the (STF processor)
mail directory to check for incoming
messages. Returns Boolean indicating
presence or absence ol inpuls from WEA
and stores the name of first unread

file in pszUnreadMsgFilName private
data member. It as well updates a more
flag if more unread messages are
present.

This method opens up the first unread
message given by private data member
pszUnreadMsgFilName, scans message file
for attachment file name and From
tields, The steps followed by this

10

30

35

40

45

55

60

65

method are given helow.

1. Opens the file given by
pszUnreadMsgFilName using fopen{) in
read only mode.

3. Reads contents of file using

fgets() function and compares each
string with szAllachment. Exlracls the
name of file and sels it in
pszInAnFilName data member.

4. Similarly compare cach string with
szFrom to get the sender of the message
and assign it in psz[nUserlnfo field

data member.

virlual BOOL This method formulates an array of
bGetMsgltem(PPSZ pointers to strings in ppszlnpulTx and
ppselnputTx, pointer to count of strings conlained
USHORT*, in pInputTxCount from the data read
plopurTxCounty from pszInAttFilName member. The steps
[ollowed in his method are given
below.

1. Opens attachment file given by
pszOutAttFilName and szInAttPath using
fopen() function.

2. Allocate memory for ppszlnpuiTx
elements.

3. Reads the contents of file line by

line using fgets() function and stores

it as a string in ppszlnputTx.

4. Sels the number of lines read in

plnputTxCount.

5. Closes attachment file.
virtwal BOOL Closes all the resources opened by
bCloseMsg() bOpenMsg() method.
virtual BOOL This method stamps the messages as read
bMarkMsgRead(USHORT afier a transaction is processed.

*uDeleteTxFlag)

~STHransMs gMIIS() Destructor for STFTransMsgMITS. It
deletes memory for some of its privale
data members.

Class Name: STFTransMsgVIM

Class Description

The STFTransMsg VIM derived class consists of a set of
public methods which overload the methods of the
STFTransMsg derived class. This set of public methods are
specific to VIM messaging environment.

Super Class

STFTransMsg
Sub Classcs
None
Alributes
Attribute Name Altrbute Description
vSession VIM session identifier
vMsg VIM open message identifier
vinMsg VIM open Message identifier
for inbound message
vRef VIM message reference position
vConlainer VIM open message conlainer
identifier

Public Melhods

Method Name Method Description

TransMsg VIM(INIFILE Constructor of STFTransMsgVIM

*pINIFile) object. It opens a VIM session
using VIMOpenSession{) API
call.

virtual BOOL CreateMsg(PPSZ This method creates an

ppszEmtOut, USHORT outbound message. [t uses the

uFmiOutCount} VIMCrealeMsg() VIM APl

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 29 of 38 PagelD# 107

6,058,413

39

~continued

40

-continued

provided in VIM.DLL.

It gcts pointer to string
containing user information
like sender, recipient from
TransMsg methods from which it
creates the message header
using following VIM API calls
1. VIMSctMessageHeader()

2. VIMSetMessageRecipient{)
‘This method posts Lhe message
along with attachment file
vsing following VIM API calls.
1. VIMSetMessagellem
associates an attachment file
with message formulated by
VIMCreateMessage()

2. VIMSendMessage() posts
the message along with
attachment file,

virtual BOOL SctMsgHd:{)

virual BOOL SendMsg()

virtual BOOL This method polls the mail
QueryNewMsg(BOOL directory o check for new
*pMore) messages. Uses following VIM

API calls

1. VIMOpenMessageContainer()
UPED.S a message container
conlaining inbound mail.

2. VIMEnumerate Messages()
enumerates the messages and
gels the message reference of
first unread message.

Opens the incoming message
using VIMOpenMessage() method
provided by VIM.DLL..

This method extracts the
attachment file information

from container box using
following VIM AP calls.

1. VIMEnumerate Messageltems()
enumerales the message for
altachmenl files.

2. VIMGetMsgltem() extracts
the attachment file item and
stares the contents in
ppszinpwiTx.

Closes all the resources

opened using VIMCloseMessage()
API call.

This method stamps the
messages after they arc read.

It uses VIMMarkMessageRead()
method of VIM.DDI.T.

Destruector of STFTransMsgVIM.
Closes a VIM session using
VIMCloseSession() function.

virtual BOOL OpenMsg()

virtual BOOL GelMsgliem(PI’'SZ
ppselnputlx, USHORL *
uknputTxCeunt)

virtual BOOL CloseMsg()

vittial BOOT, MarkMsgRead()

~TransMsgVIM()

Class Name: STFTransDB

Class Description

STFTransDB derived class consists of a set of public
methods which overload the appropriate methods of the
STFTransporter class to incorporate Database specific fea-
tures. The STFTransDB derived class also contains a set of
protected virtual methods which are used in defining the set
of the STFTransDB public methods, i.e. in writing the code
of these public methods. This set of protected virtual meth-
ads in turn is overloaded by the methods of the derived class
STFIransDBSQL in case of Patabase environment based on
SQL.

Super Class

STFTransporter

Sub Class

STFTransDBSQL handles SQL Database environment

10

30

40

45

55

60

65

Claszes [lsed
None
Altributes

Attribute Name

Attribute Description

ppseDBServerlnfo

uDBServerInfoCount

Database Management System
Information

number of elements in
ppszDBServerInfo

Public Methods

Method Name

Method Description

STFTransDB()

USHORT uGetInpulTx(PPSZ
ppszAWESTFInputTx, USHORT*
ulnTxCounl,

BOOL *pbMorelnputs)

BOOL bWriteWEAOutput (PPSZ
ppszl'mtQutput, USIIORT
uFOCount)

BOOL bGellnDBInfo(PPSZ
ppszDBServerlnfo, USHORT*
pDBInfoCount)

BOOL bPutOuDBInto(PPSZ
ppseDBServerlnfo, USHORT
vOuDBCount)

Consructor used for

initializing the database
management system information.
This method uses protecied
virtual metheds which are
overloaded by appropriate
metheds of STFTTansDBSQL derived
class. It gets the inbound
transaction, database server
information.

1. the ppszAWEASTFInputTx
argument receives reference to
array of pointers to strings
containing transactions sent by
WEA.

2. ulnTxCount specifies count
of strings in
ppstAWEASTFInputTx.

3 pMorelnputs flag indicates

if more unread STF database
records are preseni. This flag

{s useful in processing multiple
input transactions.

This method accepls parameters
for creating an outbound
transaction to be sent to WEA.
It accepts array of pointers to
strings from which a retum
Transaction is formulated as a
database record and writes it
onto the STT shared dalabase. Il
makes use of protected virtual
methods that are overloaded hy
the appropriate methods of
STFTransDBSQL derived class.
Various arguments are given
below.

1. ppszFmtOutput argument
contains formatter output
Transaction for anward delivery
to WEA.

2. uFOCount argument specifies
number of strings in
ppszFmtQutput.

This method gels STF dalabase
and dictionary information that
is stored in ppszDBServerInfo
private data member. This is
used for writing the database
records onto STF Database, The
various arguments passed are
given as under.

1. the ppszDBServerlnfo
argument conlains Input STF
Dalabase management system
information for reading and
writing records to the database,
2. pDBInfoCount points to
number of strings in
ppszDBServerlnfo.

This method accepts dalabase
management system information 1o
be used within the tansporter
for addressing outhound

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 30 of 38 PagelD# 108

6,058,413

4

-continued

42

-continued

BOOL bDeletcTx(USHORT
*uDeleteTxFlag)

~STFTransDB()

transaction.

The various arguments are
described below.

1. the ppszDBServerInfo
argument containg array of
pointers to strings coniaining
user information for addressing
outbound transaction.

2, uOutDBCount specifies
number of strings in
ppszDBServerlnfo data structure.
This method marks the input
database record from WEA as read
once they are processed and
deletes the memory allocated for
private data members of
STFlransDB.

Destructor used for deleling
ppszDBServernfy data member.

Protected Melhods

Method Name

Method Description

virtual BOOL
bCreateSTFRecord(PPSZ
ppszFmiOul,

USHORT wFmtOutCount)

vinual BOOL
bQueryNewSTFRecord(BOOL
*pbMore)

virtual BOOL
bDeleteSTFRecord (USHORT
rubeleteTxFlag).

vittnal BOOL
bReadSTFRecord(PPSZ
ppszinputTx,

USHORT* pulnputTx)

This is a protected virtual

method that will be everloaded
by appropriate member functions
of STFTransDBSQL derived class.
it creates a database record

from array of pointers to

steings passed as argument to

it

This method is overloaded by
bQueryNewSTI Record() method of
SIFransDBSQL derived class. It
polls for AWEA records written
onto STF Database and returns
Boolean indicating presence or
absence of AWEA input. It also
sels the more flag in case more
unread records are present in

the STF Database.

This method is overloaded by
bDeleteSTFRecord() method of
STFTransDBSQI. derived class.
This method is overloaded by
bRead STFRecord() method of
STFTransDBSQY. derived class. Tt
passes reference to array of
pointers contzining STF keyword
names, values and flags of the
transaction. It is used by
bGetlnputTx() public method of

this class.

Class Name: STFTransDBSOL

Class Description

The STFTransDBSQL derived class from STFTransDB
consists of a set of public methods which overload the
methods of the STFTransDB derived class. This set of public
methods are specific to SQL Database Server environment.

s

uper Class

STFTransDB
Sub Classes
None

C

lasses Used

None
Attributes

Attribute Name

Attribute Description

pszSQLDBName
ppszSQLTabName

SQL database name
Array of SQL tables in the

10

30

35

40

45

50

55

60

65

uSGLTabCount

SQ1. database.
number of tables in the SQL
database

Privatc Mcthods
Nene
Public Methods

Method Name

Method Description

STFTransDBSQIL{)

virtusl BOOL
bCreateSTFRecord(PPSZ
ppseFmtOut, USHORT
uFmrOutCount)

virtual BOOL
bQueryNewSTFRecord(BOOL
*pbMore)

virtual BOOL
bReadSTFRecord(PPSZ
ppszinputTx, USHORT™
ploputTxCount)

virtual BOOL
bDeleteSTFRecord (USHORT
*ubelete IxbFlag)
~STFTransDBSQL{)

Constructor of STFTransDBSQL
class. [t initializes private

data members of STFTransDBSQL
This creates record in the

output STF DB tables and wrilcs
strings [rom ppszFmtOut inte the
dntabase tables.

This method polls the STF
processor database tables for

new lransactions with

Transaction ID as the key.
Returns Boolean indicating
presence or absence of inputs
from WEA and stores the WEA
lnput record. It updates a mare
flag if more unread records are
present in the STF database.

This method formulates an array
of pointers to strings in
ppszlnputTx and pointer to count
of strings contained in
plnputxCount from the data read
from the STF database tables.
This method deletes the
processed STF Record from the
STF 8QL database tables.
Destructor for STETransDBSQL It
deletes memory for some of its
private data members.

Class Name: TxParser

Class Description

This class parses the WEA input which is stored as an
array of strings stored in the attributes. It has methods for
parsing and returning keyword values from input STF
Transactions. Please refer to Appendix-B for a list of key-
words and their explanations. The TxParser object is created
by the TxProcessor for getting Input Transaction from

STFTransporter.

Super Class
None

Sub Classes
None
Classes Used

STFTransporier - used to get STF Transaclion strings.

Altribute Name

Altributes

Attribute Description

pTransporter

ppszlnSTFTx

Poirter lo STFTransporter
base class

pointer to array of strings
containing [nput transactions
read from transporter.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 31 of 38 PagelD# 109

6,058,413

43

~conlinued

ulnSTFTxCount Number of strings stored in

ppszInSTFTx

Method Name

Method Description

Public Methods

TxParscr (STFTransporter

Constructor that accepts pointer

=pTransporter} te STFTransporler and stores it in
its privale dala member.
USHORT This method calls the
uGetTransInput (BOOL STFTransporter method
*pbMoreTx) bGellnputTx () to get the STF

BOOL bIsSTFTxKwidExist {(PSZ
pszKwd)

INT ilsSTFIxKwdExist (PSZ
pszKwd)

PSZ pszParseSTF Value (PSZ
pszKwd, CHAR *pcFlag,
USHORT ~ puPisStatus)

BOOL bGetSTFIxType
(USHORT =puType)

Transaction and stores it in
ppszlnSTFTx

‘This method checks whether the
given keyword exists in the
ppszlnSTFTx. Tt returns TRUE if
the keyword exisls, else FALSE.
This method checks whether the
given keyword exists in the
ppszInSTFTx. It rcturns the index
of the keyword in ppszInSTHFTx
array of strings and returns -1 if
the keyword was not found.

This methed returns the keyword
value associated with the pszKwd
and updates the STF keyword type
flag in pcFlag.

This method updates the puType
with the STF Transaclion type.

The following methods are used to get STF Transaction keyword
values are overloaded for different keyword types.

USHORT

uGetSTFTxKwd Value (PSZ
pszKwd, PPSZ ppszKwdValue)
USHORT

uGerSTH IxKwd Value (PSZ
pszKwd, USIIORT *puKwdValue)
USHORT

uGetSTHFIRKwd Value (PSZ
pszKwd, INT *piKwd Value)
USHORT

nGetSTFTxKwdValue (PS7.
pszKwd, LONG *plKwdValue)
USHORT

uGetSTFIxKwd Value (PSZ
psziwd, BOOT, *pbKwdValue)
USHORT
ulretSTFTxKwd Value (PSZ
pszKwd, LPDATETIMET
pDateTime)

USHORT
uGetSTFTxKwd Value (PSZ
pszKwd, TLPORG2ID pORG2ID,
INT *piCount)

USHORT
uCretSTETxKwd Value (PSZ
pszKwd, LPTXBDFIEL.DSTRUCT
pRData, INT *piCount}

BOOL behecklnputTx ()

VOID vDeleteParserData ()

~TxParser ()

‘I'his method updates the keyword
value ppszKwdValue associated
with the pszKwd keyword.

This method updates the keyword
value puKwdValue associated with
the pszKwd keyword.

This methed updates the keyword
value piKwdValue associated with
the pszKwd keyword.

This method updates the keyword
value plKwdValue associated with
the pszKwd keyword.

This method updates the keyword
value phKwdValue associated with
the pszKwd keyword.

This method updates the keyword
value structure pDatel'ime.

This method updates the
structure pORG2ID and the count
associaled with the pszKwd.

This method updates the
structure pBData and the count
associaled with the pszKwd.

Checks if data is present in
ppszlnSTFTx.

Deletes data stored in
ppsz[nSTHTX and resets the
ulnSTFTxCount.

This method is the destructor
which deletes the transaction
data.

Class Name: I'xFormatter
Class Description

This class contains methods to produce STF Transaction
from keyword values for the STFTransporter. This class will
hide the Transaction from knowing about the external inter-
face to WEA. It will essentially format the data required by
the STFTransporter to cutput an STF Transaction. This class
is used by Transaction class. The Txlormatier will call

10

25

30

35

40

45

50

55

60

65

44

STFTransporter method and pass array of STF keyword
strings stored by the TxFormatter. The TxFormatter keeps
on accumulating STF keyword strings till it gets bFmtEnd()
message. The bFmIEnd() will call STFTransporter method

to write the STF Transaction to the WEA.

Super Class
None

Sub Classes
None
Classes Used

STF_Tx STF. Tx class to gel the STFTransporter

pointer

$TFTransporter STFTransporter class to output the STF

Transaction
Allributes

Attribute Name

Allribute Description

ppszOutSTFTX data structure containing
oulput transaction,
uOuSTFTxCount Number of strings in
ppszOutSTFTx.
Public Methods
Method Name Method Description
I'sFormatrer() This method is he constructor
for this class which
initializes the attributes.
BOOL bFmStart() This method starts the
formatter initializing the
array of pointers to hold the
SIF keywords and values. This
is equivalent to opening a
file.
BOOL bFmtEnd(STF_Tx *pSTF_Tx) This method signals the
formatter that all the data
that needs to be sent to WEA
has been formatted and can
call STFTransporter method to
write the STF Transaction to
the oulput. This is equivalent
to closing and flushing a
file.

The following methods are uscd to format STF Transac-
tion keyword and value are overloaded for different keyword
types.

Method Name Method Description

BOOL bFmKwd (PSZ pszKwd, This method formals the pszKwd

PSZ pszKwdValue) and pszKwdValue in the form
pszKgwd:pszKwd Value.

BOOL bFmKwd (PSZ pszKwd, This method [ormats the pseKwd

INT iKwdValue) and {KwdValue in the form
pszKwd: :iKwd Value,

BOOL bFmiKwd (PSZ pseKwd, This method formats the pszKwd

USHORT vEwdValue) and uKwdValue in the form
pszKwd:uKwdValue.

BOOL bFmtKwd {PSZ pszKwd,
LONG |KwdValue)

BOOL bFmtKwd (PSZ pszKwd,
LPWFLIST pWFList, INT iCount)

This method formats the pszKwd
and 1KwdValue in the form
pszKwd:IKwdValue.

This method formats the pszKwd
and pwFList contents in the

form
pszKwd:pWFELIs[0pWFELis[1]; . . .
pWFList [{Count-1]

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 32 of 38 PagelD# 110

6,058,413

45

-continued

46

-continued

Method Name

Method Description

BOOL bFmtKwd (PSZ pszKwd,
1 PRPFLIST pBPList, INT iCount)

BOOL bFmtKwd (PSZ pszKwd,
LPSTATUS pStatus)

BOOL bFmtKwd (PSZ pszKwd,

LPACTINFO pActInfo, INT
iCount)

~TxFormatter ()

‘This methed formats the pszKwd
and ppBPList contents in the
form
pszKwd:pBPList[0]:pBpList[1]; . . .
pBpList [iCount-1]

This method formats the pszKwd
and pSlatus contents in the

form pszKwd pSialus

This method formats the pszKwd
and ppActinfo contents in the
form

pszKwd:pAcilnfol OkpActinfo]1]; . . .

pActnfo[{Count-1]

This method is the destrudor
for this class which de-
initializes the attributes.

Class Name: Envelope
Class Description

This class handles addressing information of WEA. It is

used by STF_Tx, BoundData and Transaction classes.

Super Class
None
Subclass
None

Classes Used

and Transaction methods.

STTTransporler used to get addressing information of

inbound transactions.

Transaction used 1o get addressing information of

oulbound lransactions.

BoundDats used to get addressing information of

outbound transacticns.
Allributes

Autribute Name

Attrihute Description

ppszinUserlnfo

unUserInfoCount
pps7zQuttlserinfo

uOutUserlnfoCount

pointer lo armay of sirings

containing inbound user

information,

Number of items in ppszlnUserinfo
pointer to array of strings

containing cutbound uscr info.
Number of iiems in ppszOutUserinfo

Public Mecthods

Method Name

Method Descriplion

Envelope()

BOOL bPutinUserlnfo(STF_Tx
*pSTF_Tx)

PSZ pszGetInUserInfof)

BOOL bPutOwtUserInfo{STF_Tx
*pSTF_Ix, PSZ psxUserlnfo)

This method is the
constructor which initializes
the attributes.

‘This method calls transporter
method bGetlnUserInfo() to
get addressing information of
currently processed [nbound
transaction and stores il in
its private data member.

This method returns 2 string
containing addressing
information which is built
from varicus elements of
ppszlnlserInfo,

This method sccepts string
containing user information
converts it into appropriate
format as required by
STFTransparter for addressing
and calls STFTransporter
method for handing user

10

25

a0

35

40

45

50

55

60

65

infarmation for current
Qutbound transaction.

BOOL bGetOutUserlnfo(PPSZ
ppsz0Ouilser[nfo, USHORT
*puQutUscrlnfoCount)
~Envelope()

This method returns the
outhound user information
stored in the attributes.

This method is the destructor

which de-initizlizes the
attributes.

Class Name: BoundData
Class Description

This class stores and handles all bound data associated

with a Iransaction.

Super Class
None
Sub Classes
None

Classes Used

STF_Tx, STFTxKwd

Attributes

Attribute Name

Attribute Description

pSTFTx
szBDKwd
szFormName
iBDCount
pBoundDalta

Pointer to STF_Tx object
BOUNDDATA keyword string
Form Name

Number of BD structures
Pointer to array of Bound Data
structures

Public Methods

Method Name

Method Description

BoundDala(STF_Tx *pSTF_Tx}

USHORT uPutInTxBoundData()

BOOL bPuGetTxBoundData(BOCL
bActOSLate, INT iActOrState)

BOOL bPutRinTxBoundData(LONG
ITxId)

BOOL bBindAppDaltaf)

PSZ pszGetBoundDalaStream{)

~BoundData()

This method is the

constructer which updates
pSTFTx with the passed
parameter and szBDKwd by
instantialing STFIxKwd

‘This method updates the bound
data attributes from the

input transaction using
TxParser method.

This method gets the
ActOrState Flag and
ActOrStale value and updales
the bound data attributes by
calling AWSTGetBoundDatal)
and

AWSTGetBDFicld Attributes().
This method is for “Gel’ type
of (ransactions.

This method gets the
Transaction ID and calls the
overloaded methods of
AWSTGetBoundData() and
AWSTGetBDField Autributes()
and updates the bound data
attributes. This methed is

for “Return’ type of
tiansactions.

This methed is used to call
AWSTBindAppData(} to bind the
application data with respect
to a business process or a
workflow.

This method is used to retumn
the bound dala structure
valucs as a string.

This method is the destroctor
which de-initializes the
attributes.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 33 of 38 PagelD# 111

Class Name: STF TX
Class Description

This class is used 1o process the inbound as well as the
cutbound transactions. It has methods to get the transaction
type. It initiates the Transaction class based on the transac-

tion type.

6,058,413

47

Super Class
None

Sub Classcs
None
Classes sed

Transaction, STFTransporter, TxParser, TxFormatter,
INIFile, Envelope, and BoundData.

Attributes

Attribute Name

Attribute Description

ulnOrCutTx

uTxType
IIxID

bConstrFailed

pTrunsaction
pTransporter
pIxParser
pTxFormatter
pINIFile
pEnvelope
pBD

Flag te indicate Inbound or Outbound
Transaction

Transaction type

Transaction 1D assigned by the
workflow server

Flag to indicate whether STF_'Tx
constructor failed or not

Pointer to Transaction class
Pointer to STFTransporter ¢lass
Pointer to TxParser class

Pointer to TxFormatter class
Pointer to INIFile class

Pointer to Envelope

Pointer to BoundDala

Private Methods
None
Public Methods

Method Name

Method Description

SIF_Tx(USHORT ulnOrOutTx,
STFTransporier *pTransporter,
TxParser =plxlarser,
Takormatter *p'IxFormatter,
IxTFile *pINIFile)

~STF_Tx()

This method is the
constructor which accepts the
mode which indicates whether
input or output transaction.
Based an this mode, it
Instantiates the transaction
objects.

This method is the destructor
which deletes all data

related to transaction
instantiated in the
constructor.

Class Name: TxProcessor
Class Description

This is the main controlling class of STE processor. It has
pointers to STFTransporter TxParser, TxFormatter and
STF__Tx and INIFile classes in the STF Processor. TxPro-
cessor will be instantiated once during an STF Session (in

the main program).

Super Class
None
Subcluss
None
Classes Used

STFTransporter, TxParser, TxFormatter, STF__Tx and

INIFile.
Attributes

Attribute Name

Attribute Description

pTransposter
pxPrs

Pointer to STFTransporter class
Pointer to TxPamer class

1c

(=

30

40

45

55

60

48

-continued
pTxFormatter Pointer to TxFormatter class
pSTF_Tx Pointer to STF_Tx class
pINIFile Poinler to INIFile class

Method Name Method Description

This method is the constructor
ol TxProcessor which
instantiates STFTransporter,
TxParser, TxFormatter and
INIFile.

This method processes the input
Transaction data by
inslantiating STF__Tx in Input
mode.

This method processes the output
Transaction data by

instantiating STF_Tx in OQutput
mode.

This method is the destructor of
TxProcessor which deletes all
data member poinlers.

TxProcessor()

BOOL bProcesslnput Tx(BOOL
*pbMoreIx)

BOOL bProcessOutpulTx()

~TxProcessoi(}

Class Name: Transaction
Class Description
This class is the base class for the various types of WEA

(ransaction classes It has virtual method to process the
required Transactions.

Super Class

Nane

Sub Classes

[nitBP, [nitWF, Act, BindData, GetWI'Status,
GetPendingActions, GetAvailableBPs, ReturnWFstatus
Classes Used

STF _Tx

Attributes

Attribute Name Altribute Description

pSIF_Tx Pointer to STF_Tx class
bRtnStatus Flag to indicale whether WEA
requested Status of Transaction
bRInBData Flag o indizsle whether WEA
requested Bound Dala
1AWSTError Error relurned by workflow server
API(s)
BPTid Busincss Process Transaction ID
WETid WorkFlow Transaction [D
Tdentity TIdentity of the person who s
initiating the Transaction.
ppszSTFTxId STF Transaciion 1D sent by WEA

Public Methods

Method Name Method Description

This method is the constructor
which accepts the pointer to
STF_ Tx class and substitutes it
in pSTF_Tx data member.
This virtual method is used to
call workflow server API(s) and
Formatter to process the
Transactions. By default it
processes invalid Transactions.
This method is the destructor
which de-allocates all the
memeory oceupied by data
members.

Transaction(STF_Tx *pSTFTx}

virtual BOOL bDeli()

~Transaction{)

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 34 of 38 PagelD# 112

6,058,413
49 50
Class Name: STFTxKwd
Class Description -continued

‘This class defines STF Transaction keywords, This is used
by the Transaction class (o get keyword string and values for

Method Name Mcthed Description

calling workflow server APIs and to send return values of 5 object using Parser’s method
workflow server APls to ‘I'xFormatter. ‘Ihe constructor of bGetSTRTxKwd Value().
: o . USHORT This method cutputs the keyword
this class gets the k‘eyword sinng from Resource. uGetKwdValue(LFORGZID values in pOrg2ID and piCount
pOrgZID, INT *piCount) corresponding to the data
member szKwd stored in the
10 object using Parser’s method
Super Class bGetSTFIxKwd Value().
None ~STFTxKwd() This method is the destructor
Sub Classes which does nothing.
None
Classes Used
‘T'xParser STF Transaction Parser 15 i
Attributes Class Name: InitBP
Attribute Name Attribute Description Class Description
pSTF_Tx Pointer to STF_Tx class (to get This class is derived from Transaction class and it has
Parser pointer) 20 methods to call workflow server APE and the TxFormatter.
szRwd STF Keyword string
Public Methods
Method Name Mcthod Description Super Class
Transaction
STETXKwd(STF_Tx *pSTFTx, This constructor accepts the 25 Sub Classes
USHORT uKwdID) pointer to STF_Tx class and the None
keyword 1D (defined in the Classes Used
Resource), It fills the szKwd STF_Tx, STFTxKwd.
data member corresponding to Attribules
uKwdID from the Resource, . o
P37, psvGelKwd() This method returns szKwd 30 Attribute Name Attribute Description
stored in the object.
VOID v(ietKwd(PSZ pseKwd) This method updates pszKwd with None None
szKwd stored in the object.
This method assumes that the Private Methods
caller allocates memory for
pszKwd. 35 Method Nams Method Description
USHORT uGetKwdValue(PPSZ This method outputs the keyword
ppszKwd ValueStr) value corresponding to the BOOL bCallAPI() This method is used to call
szKwd stored in the object the workflow server API lo
using Parscr's method initiate business process. To
bGetSTETxKwd Value(). gel the paramelers needed for
the workflow server AFPI call,
4 it instantiates the STFTxKwd
The following methods are overloaded for different key- O}:l:;itgc:i different
word data types. ROOL. hCallFormatter(STF_ Tx E’his method is used to call
*pSTF_Tx) TxFomalter to format the
return values got from
45 workllow server APL. Using
Method Name Msthed Descniption pSTF_T=, it gets the pointer

to TxFormatter.

USHORT uGetKwdValue(GSHORT — This method outputs the keyword

*puKwd) value in puKwd comesponding (o Public Mcthods
the data member szKwd stored in
the object using Parser's 50 Method Name Method Description
method bGetSTFTxKwdValue().
USEIORT uGelKwdValue(INT This method outputs the keyword InitBP(STF_Tx “pSTFTx) This methed is the constructor
*piKwd) value in piKwd correspending to which accepls the poinier to
the data member szKwd stored in STF_Tx class which will be used
the object using Parser’s by other methods of this class.
method bGetSTFTxKwdValue{). 35 virtval BOOL bDolt{) This method calls the private
USHORT uGetKwdValue{(LONG This method oulpuls the keyword methods bCallAPI() and
*plKwd) value in plKwd correspending to bCallFormatter{) to process
the data member szKwd stored in this Transaction,
the obfect using Parser's ~[nilBP() This method is the destructer
method bGetSTFTxKwdValue(). which de-initializes all the
USHORT uiretKwdValue{BOOL This method outputs the keyword 60 attributes.
*pbKwd) value in pbKwd corresponding to

the data member szKwd stored in
the object using Parser's

method hCGelSTFIxKwdValue(). Class Name: [nitWF
USHORT This method outputs the keyword Lo
uGetKwdValue(LPDATETIMET value in pDatalime Class Description
pDaleTime) corresponding to the data 63
member szKwd stored in the This class is derived from Transaction class and it has

methods to call workflow server API and the TxFormatter.

Case 1:11-cv-00678-CMH -TRJ

51

6,058,413

Document 1-2 Filed 06/23/11 Page 35 of 38 PagelD# 113

52

-continued

Super Class

BOOL bCallFormaner(STF_Tx

This method is used to call

‘Fransaction “pSTF _Tx) TxFormatter to format the return
Sub Classes 5 values got from workflow server
None APT. Using pSTF_Tx, it gels the
Classes Used pointer to TxFormatter.
STF_Tx, STFTxKwd.
Allribules Public Methods
Attribute Name Attribute Description 10 Method Name Method Description
None None Act(STF__Tx *pSTFTx) This method is the constructor
which accepts the pointer to STF_Tx
Private Melhods class which will be used by other
methods of this class.
Method Name Method Description 15 virual BOOL bDoli() This method calls the private
methods bCallAPI() and
BOOL bCallAPI() This mcthod is used to call the bCallFormatter() to process this
workflow server APT to initiale Ttansaction.
wurkflow. To get the paramelers ~Act() This method is the destructor which
needed for the workflow server de-initializes all the atiributes.
API call, it instantiates the a0
STFTxKwd objects for different -
parameters. Class Name: BindData
BOOL This methed is used to call Class Description
bCallFormatter(STF_Tx TxFormatter to format the return L
*oSTF_ Tx) values got from workHlow server This class is derived from Transaction class and it has
APL. Using pSTF_Tx, it gets the methods to call workflow server API and the TxFormatter.
pointer to TxFormatter. 25
Public Methods
- Super Class
Method Name Method Bescription Transaction
- X X Suh Classes
InitWE(STF Tx *pSTITx) This method is the constructor 30 Nongc
which accepts the pointer Lo Classes Used
STF_Tx class which will be used STEIXKwd
by other methods of this class. Attributes
virtual BOOL bDolt() This methed calls the private _—
methods bUallAPL() and Alribute Name Attribute Description
p
bCallFormatter() to process Lhis 15
Transaction. None None
~[nitWE() This method s the destructor
which de-initializes all the Private Methods
attributes. ——
Method Name Methed Description
40
Class Name: Act BOOL bCzIIAPI() This method is used to call the
P ‘er API to bind the
Class Description workflow server AP to bind the
i X))) application data to a business
This class is derived [rom Transacticn class and it has process or a workflow. It
methods to call workflow server API and the TxFormatter, instantiates Bound Data object
45 to perform this operation.
BOOL bCallFormalter(STF. . Tx This method is used to call
*pSTF Tx) TxFormatter to format the return
values got from workflow server
Super Class APL Using pSTF_Ty, it gets the
Transaction pointer to TxFormatter.
Sub Classes
None 50 Public Methods
Classes Used I
STF_TXKWd= STFTxKwd. Method Name Method Description
Attributes
. . L BindData(STI' Tx *pSTITx) This method is the constructor
Attribute Name Attibute Descriplion which accepts the pointer to
. 55 STF_TX class which will be used by
None None other methods of this class.
N virtual BOOL bDolt{) This method calls the private
Private Methods methods bCallAPY() and
L. bCallFormatter() to process this
Method Name Method Description Transaction,
]] s0 ~BindData() ‘This method is the destructor
BOOL bCaliAPI() This method is used to call the which de-initializes all the
workflow server API(s) Lo act on altribules,
a workflow. To get the
parameters needed for the
worktlow server API call, it Class Name: GetWFStatus
instantiates the STFTxKwd A
55 Class Description

objects for differcnt
parameters.

This class is derived from Transaction class and has
methods to call workflow server API and the Txl'ormatter.

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 36 of 38 PagelD# 114

6,058,413

53

54

-continued
Super lass Private Methods
Transaction
Sub Classes 5 Method Name Method Description
None
Classes Used BOOL bCallAPI() This method is used to call the
STFTxKwd, STFTxKwd. workflow server API to get the
Alributes list of workflows for which
actions are pending,
Attribute Name Attribute Description 10 BOOL bCallFormauter(STF_Tx This method is used to call
*pSTFTx) TxFormatter to format the relurn
pStatus Structure which has the Status values got from workflow server
string APIL. Using pSTF_Tx, it gets the
iActCuunt Number of ActInfo siructures pointer to TxFormaller.
returned
ppActInfo Array of ActInfo structures 15 Public Methods
Private Methods Method Name Methed Description
Method Name Method Description GetPendingActions(STF_ _Tx ‘This method is the constructor
*pEIFIx) which accepts the pointer to
BOOL bCallAPI() This methed is used to call the 20 STF_Tx class which will be used by
workflow server API(s) to get the other methods of this ¢lass.
status of the workfiow. To get virtual BOOL bDokt() This method calls the privale
the parameters needed for the methods bCallAPI{) and
workflow server API call(s), it bCallFormatter() io process this
instantiates the STFTxKwd objects Transaction.
for different parameters. To ~GetPendingActions{) This method is the destructor
process Bound Dala related 25 which de-initializes al} the
information, il instantiates attributes.
Bound Data object.
BOOL bCallFormatter(STF Tx This method is used to call.
*p1F_Tx) ‘TxFormatler Lo format the return Class Name: GetAvailableBPs
values got from workflow server .
APL Using pSTF Tx, it gets the 30 Class Description
pointer to TxFormatter. This class is derived from Transaction class and it has
Public Methods methods to call workflow server API and the TxFormatter.
Method Name Method Description
GetWFStatus(STF_Tx “pSTFIx) This constructor which accepts # Super Class
the pointer to STF_Tx class Transaction
which will be used by other Sub Classes
methods. None
virtual BOOL bDolt{) This method calls the private Classes Used
methods bCallAPI() and 40 STF_T'x, STFTxKwd.
bCallFormaltter() lo process this Atlributes
Transaction.
~GetWEStatus() This methad is the destructor Attribute Name Attribute Description
which de-Initializes all the
attribules. iBPCount Number of Business Process
list structures returned
45 pBPList Array of Business Process
slructures
Class Name: GetPendingActions -
Private Methods
Class Description Method Name Method Description
50
This class is derived from Transaction class and it has ~ BOOL bCzIIAPI() This method is used o call the
metheds to call workflow server API and the TxFormatter. workflow server APL o get the
list of available business
Processes.
BOOL ‘This method is used to call
55 bCallFormatter(STF_Tx TxFormatter to format the return
Super Class *pSTF _Tx) values got from workflow server
Transaction APL Using pSTF_Tx, it gets the
Subclass pointer 1o TxFormatter.
None
Classes Used Public Methods
STF_Tx, STFIxKwd.
Attributes 50 Method Name Method Description
Attribute Name Attribute Description GetAvailableBPs(STF__Tx This method is the consiructor
*pSTFTx) which accepls the pointer to
1WFCount Number of WorkFlow list STF_Tx class which will be used by
structures returned other methods of this class.
PPWFList Array of WorkFlow structures 55 virual BOOL bDok() This method calls the private

methods bCallAPI() and

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page'37 of 38 PagelD# 115

6,058,413

55

-continued

hCallFormatter() to process this
TFransaction,

This method is the destructor
which de-initializes all the
attributes.

~GetAvailableBPs(}

Class Name: ReturnWEStatus

Class Description

This class is derived from Transaction class and has
methods to Poll for workflow processor generated Notifica-
tions and call workflow server API for getting Workflow
status and Bound Data. It also calls the TxFormatter to send
the WF status data to the WEA.

Super Class

Transaction

Sub Classes

None

Classes Used
STFTxKwd, ST I'xKwd.
Aftribules

Attribute Name Altribute Description

pStatus Structure which has the Status
string

[ActCount Number of ActInfo structures
returned

ppaActilnfo Array of Actinfo structures

Private Methods

Method Name Method Description

BOOL bCallAPI() This method is used to call the
workflow server API(s) to get the
status of the workflow. To get

the parameters needed for the
workflow server AP call(s), it
Imstantiates the STFTxKwd objects
for different parameters. To
process Bound Dala related
information, it instantiales

Bound Data object.

This methed is used to call
TxFormatter to format the return
values got from worktlow server
APL Using pSTF Tx, it gets the
pointer to TxFormatter.

BOOL bCallFormatter(STF__Tx
*pSTE_Tx)

Public Methods

Method Name Method Description

ReturnWFEStatus(STF Tx
pSLIF L)

This constructor which accepts the
pointer to STF_Tx class which will
be used by other methods.

This method polls to Netification
events in the $1'D) queue of the
server. If it finds an event, the
appropriate workflow server ATIs are
called to obtain WF status.

This method is the destructor which
de-initializes all the attributes.

virtual BOOL bDoll{)

~RetirnWFStatus()

Class Name: Error

Class Description

This ¢lass is used for error handling. Il records the errors
during an STF Processor session. The error object is updated
with error information by other objects in the ST Processor
whenever an error occurs. The error messages are stored in
a Resource file (RC) and is loaded as and when required,
Whenever a non-fatal error occurs, it will be logged in an

10

30

40

45

Rk

60

65

56

ASCII error log file whose path is specified in the STF
Processor initialization file (INT file). All fatal errors will be
logged and displayed on the STF Processor display as
pop-up dialog boxes and after user intervention, the STF
Processer will shut down. Please Refer to Sec. 10 for details
of error handling in STF Processor. The Error object is
Global which s used by all the classes in STF Processor
when error logging is required. The format of error logged
in the error log file is:

<STF Processor Name>«<Date:Time><Errorcode »<Error Messages>
e.g8.
<§TFDI><12-14—9’2 12:30:00><0D0000168><Could nol find
keyword(s): BPNAME>

Super Classg

Naone

Sub Classes

None

Class Used

INTFile Initialization file class to obtain the error

log file specification.

Attrihutes

Attribute Name Attribute Description

iErrcode Error Code (corresponding to
string table ID in Resource
file)

Error log string

Whether the error is fatal or
not

Ervor log file path (from
IN1File)

pointer to INI file

pszErmlogStr

szErrl oghile

PEINIFile

Public Methods

Method Name Method Descriplion

Error() This methed is the constructor
which initializes data members.
VOID vPutError(LONG This methed updates Error code and

IErnCode, BOOL
bFatalFlag, PSZ
pszParami, PSZ pszParam2,
PSZ Param3)

message and wriles it into error
log file. The error string
pszErrLogstr corresponding to
iErrCode is accessed from the
Resource. If bFatalFlag is TRUE,
then Lhe error message is logged
and then popped up on the screen.
If there is an error in logging,

it is treated as a falal error,

The parameters are substituted to
the error message loaded from the
Resource. These paramelers ate
defaulted to NULL if not
specified.

This method gets the error messape
stored in pszErrLogStr.

PSZ. pszGetFrrMsg()

~Error() I'his methogd is the destructor
which reinitializes all data
members.
We claim:

1. A computer program for intcrfacing a workflow

enabled application to a workflow system comprising:

a) transporter means for 1) receiving from said workflow
enabled application incoming data and parsing said
received data to extract from said received data work-
flow transaction information in a predetermined stan-
dard transaction format, said predetermined standard
transaction format being adapted to address require-
ments of applications, platforms and medium indepen-
dent representations and transfers of data related to
business processes of said workflow system, and ii)
sending to said workflow enabled application outgoing

Case 1:11-cv-00678-CMH -TRJ Document 1-2 Filed 06/23/11 Page 38 of 38 PagelD# 116

0,058,413

57

workflow transaction information which has been for-
matied in said predetermined standard transaction for-
mat;

b) transaction processor means for i) processing said
workflow transaction information which has been
received and parsed by said transporter means to pre-
pare said workflow transaction information for scnding
to and use by an application program interface of said
workflow system, and ii) processing workllow frans-
action information received from said application pro-
gram interface of said workflow system for sending to
sald transporier means to prepare said received work-
flow transaction information for formatting into said
predetermined standard transaction format, sending to
and use by said workflow e¢nabled application.

2. The system defined by claim 1 wherein said standard
transaction [ormat workflow lrapsaction information
received from said workflow enabled application is at least
one of an action based transaction and a query based
transaction,

3. The system defined by claim 1 wherein said standard
transaction format workflow transaction information sent to
said workflow enabled application is at least one of
requested workflow status, returned bound data, returned
available business processes, returned pending actiens and
notification,

10

58

4. The system defined by claim 1 wherein said predeter-
mined standard transaction format comprises an envelope
and workflow data.

5. The system defined by claim 2 wherein said action
based transaction is one of initiatc business process, initiate
workflow, act in a workflow and bind data.

6. The system defined by claim 2 wherein said query
based transaction is one of request workflow status, get
available business processes and get pending actions.

7. The system defined by claim 4 wherein said envelope
contains address information which is platform and envi-
ronment dependent.

8. The system defined by claim 4 wherein said workflow
data contains workflow specific data and bound process
data.

9. The system defined by claim 8 wherein said workflow
specific dara includes standard transaction format transac-
tion type and standard transaction format identification.

10. The system defined by claim 8 wherein said bound
process data are data elements used by a workflow server for
management purposcs.

11. The system defined by claim 9 wherein said workflow
specific data further comprises at least one of workflow
participants, workflow type, iransaction type, expected
workflow completion date, requested workflow completion
date and work{low status.

