

US008991677B2

(12) United States Patent

Moore et al.

US 8,991,677 B2

(45) Date of Patent:

(10) Patent No.:

*Mar. 31, 2015

(54) DETACHABLE MOTOR POWERED SURGICAL INSTRUMENT

(71) Applicant: Ethicon Endo-Surgery, Inc., Cincinnati,

OH (US)

(72) Inventors: Kyle P. Moore, Mason, OH (US);

Frederick E. Shelton, IV, Hillsboro, OH (US); William B. Weisenburgh, II, Maineville, OH (US); Jerome R. Morgan, Cincinnati, OH (US); Mark H. Ransick, West Chester, OH (US); Eugene L. Timperman, Cincinnati, OH

(US)

(73) Assignee: Ethicon Endo-Surgery, Inc., Cincinnati,

OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/283,729

(22) Filed: May 21, 2014

(65) Prior Publication Data

US 2014/0252071 A1 Sep. 11, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/832,522, filed on Mar. 15, 2013, which is a continuation of application No. 13/118,210, filed on May 27, 2011, now Pat. No. 8,752,749, which is a continuation-in-part of

(Continued)

(51) Int. Cl.

A61B 17/068

A61B 17/072

(2006.01) (2006.01)

(Continued)

(52) U.S. Cl. CPC A61B 17/068 (2013.01); A61B 17/0686 (2013.01); A61B 17/072 (2013.01);

(58) Field of Classification Search

227/180.1; 606/139, 219

See application file for complete search history.

(Continued)

(56) References Cited

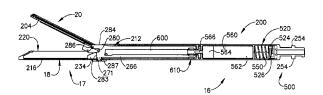
U.S. PATENT DOCUMENTS

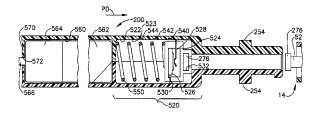
66,052 A 6/1867 Smith 662,587 A 11/1900 Blake (Continued)

FOREIGN PATENT DOCUMENTS

AU 2008207624 A1 3/2009 AU 2010214687 A1 9/2010 (Continued)

OTHER PUBLICATIONS


U.S. Appl. No. 14/459,485, filed Aug. 14, 2014. (Continued)


Primary Examiner - Scott A. Smith

(57) ABSTRACT

A detachable motor-powered surgical instrument is disclosed. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.

18 Claims, 95 Drawing Sheets

1 IS 1001

	Related U.S. A	Application Data	3,744,495 A		Johnson
	application No. 12/85	66,099, filed on Aug. 13, 2010,	3,746,002 A 3,751,902 A	7/1973 8/1973	Haller Kingsbury et al.
		95, which is a continuation of	3,819,100 A	6/1974	Noiles et al.
		31,628, filed on Feb. 14, 2008,	3,821,919 A 3,841,474 A	7/1974 10/1974	
	now Pat. No. 7,793,81	2.	3,851,196 A	11/1974	
,	_		3,885,491 A	5/1975	
(51)	Int. Cl.	(2007.01)	3,892,228 A 3,894,174 A	7/1975 7/1975	
	A61B 19/02	(2006.01)	3,940,844 A	3/1976	Colby et al.
	A61B 19/00 A61B 17/32	(2006.01) (2006.01)	3,955,581 A		Spasiano et al.
	A61B 18/14	(2006.01)	RE28,932 E 3,981,051 A		Noiles et al. Brumlik
	A61B 17/00	(2006.01)	4,054,108 A	10/1977	Gill
	A61B 17/29	(2006.01)	4,060,089 A 4,106,446 A	11/1977 8/1978	Noiles Yamada et al.
	A61B 18/00	(2006.01)	4,111,206 A	9/1978	Vishnevsky et al.
(52)	U.S. Cl.	•	4,129,059 A		Van Eck
` /		7 20 7 (2013.01); A61B 19/0256	4,169,990 A 4,198,734 A		Lerdman Brumlik
		461B 19/2203 (2013.01); <i>A61B</i>	4,198,982 A	4/1980	Fortner et al.
		3.01); <i>A61B 18/1445</i> (2013.01);	4,207,898 A 4,213,562 A	6/1980	Becht Garrett et al.
		37 (2013.01); <i>A61B</i> 2017/00017	4,226,242 A	10/1980	
		B 2017/00398 (2013.01); A61B 73 (2013.01); A61B 2017/00734	4,244,372 A		Kapitanov et al.
		TB 2017/0688 (2013.01); A61B	4,250,436 A 4,261,244 A		Weissman Becht et al.
		271 (2013.01); A61B 2017/2923	4,272,002 A		Moshofsky
		(1B 2017/2927 (2013.01); A61B	4,272,662 A		Simpson
	2017/3200	052 (2013.01); A61B 2018/0063	4,275,813 A 4,289,133 A	6/1981 9/1981	Rothfuss
		01); <i>A61B 2019/2223</i> (2013.01)	4,305,539 A	12/1981	Korolkov et al.
	USPC 227/175.2	2; 227/19; 227/176.1; 227/180.1	4,312,685 A 4,317,451 A	1/1982	Riedl Cerwin et al.
(56)	Referen	ices Cited	4,321,002 A		Froehlich
(50)	Refere	ices Cheu	4,328,839 A		Lyons et al.
	U.S. PATENT	DOCUMENTS	4,331,277 A 4,340,331 A	5/1982 7/1982	
	670,748 A 3/1901	Weddeler	4,347,450 A	8/1982	Colligan
	951,393 A 3/1910		4,349,028 A 4,353,371 A	9/1982 10/1982	
		Elliott	4,379,457 A		Gravener et al.
		McCaskey Grove	4,380,312 A		Landrus
	2,037,727 A 4/1936	La Chapelle	4,382,326 A 4,383,634 A	5/1983	Rabuse Green
		Hawkins Nattenheimer	4,393,728 A	7/1983	Larson et al.
	2,211,117 A 8/1940		4,396,139 A 4,397,311 A		Hall et al. Kanshin et al.
	2,214,870 A 9/1940		4,402,445 A	9/1983	
		Happe Rublee	4,408,692 A	10/1983	
	2,674,149 A 4/1954	Benson	4,409,057 A 4,415,112 A	10/1983	Molenda et al. Green
		O'Farrell et al. Zanichkowsky et al.	4,416,276 A	11/1983	Newton et al.
		Olson	4,428,376 A 4.429.695 A	1/1984 2/1984	Mericle Green
		Emrick	4,434,796 A		Karapetian et al.
		Palmer Iaccarino	4,438,659 A 4.442.964 A		Desplats
	3,078,465 A 2/1963	Bobrov	4,442,964 A 4,451,743 A	4/1984 5/1984	Suzuki et al.
		Bobrov et al. Sullivan, Jr.	4,454,887 A	6/1984	Krüger
	3,196,869 A 7/1965	Scholl	4,467,805 A 4,473.077 A		Fukuda Noiles et al.
		Brownrigg et al.	4,475,679 A		Fleury, Jr.
		Fleischer Hirsch et al.	4,485,816 A		Krumme Tucker et al.
	3,317,103 A 5/1967	Cullen et al.	4,486,928 A 4,488,523 A		Shichman
		Astafjev et al. Lefever	4,489,875 A	12/1984	Crawford et al.
		Green et al.	4,500,024 A 4,505,272 A		DiGiovanni et al. Utyamyshev et al.
		Green et al.	4,505,272 A 4,505,273 A		Braun et al.
		Green Wilkinson	4,505,414 A	3/1985	Filipi
	3,572,159 A 3/1971	Tschanz	4,506,671 A 4,520,817 A	3/1985 6/1985	
		Barrett Green et al.	4,520,817 A 4,522,327 A		Korthoff et al.
	3,662,939 A 5/1972	Bryan	4,526,174 A	7/1985	Froehlich
	3,717,294 A 2/1973	Green	4,527,724 A		Chow et al.
		Fishbein DeCarlo, Jr.	4,530,453 A 4,531,522 A	7/1985 7/1985	Bedi et al.
	, -,	,	.,1,1	1505	

(56)		Referen	ces Cited	4,873,977 A 4,880,015 A		Avant et al. Nierman
	U.S.	PATENT	DOCUMENTS	4,880,013 A 4,890,613 A		Golden et al.
	0.01		200011121112	4,892,244 A	1/1990	Fox et al.
	32,927 A		Miksza, Jr.	4,893,622 A		Green et al.
	48,202 A	10/1985		4,896,678 A 4,903,697 A		Ogawa Resnick et al.
	65,109 A 65,189 A	1/1986	Tsay Mabuchi	4,915,100 A	4/1990	
	66,620 A		Green et al.	4,930,503 A	6/1990	Pruitt
	71,213 A		Ishimoto	4,930,674 A	6/1990	
	73,468 A		Conta et al.	4,931,047 A 4,932,960 A		Broadwin et al. Green et al.
	73,469 A 73,622 A		Golden et al.	4,932,960 A 4,938,408 A		Bedi et al.
	75,622 A 76,167 A		Green et al. Noiles et al.	4,941,623 A	7/1990	
	80,712 A	4/1986		4,944,443 A		Oddsen et al.
	85,153 A		Failla et al.	4,955,959 A 4,965,709 A	9/1990 10/1990	
	89,416 A 91,085 A	5/1986	Green Di Giovanni	4,973,274 A		Hirukawa
	00,037 A	7/1986		4,978,049 A	12/1990	
	04,786 A		Howie, Jr.	4,978,333 A		Broadwin et al.
	05,001 A		Rothfuss et al.	4,986,808 A 4,988,334 A	1/1991	Broadwin et al. Hornlein et al.
	05,004 A 06,343 A		Di Giovanni et al. Conta et al.	5,002,543 A		Bradshaw et al.
	00,343 A 07,638 A		Crainich	5,002,553 A	3/1991	
	08,981 A		Rothfuss et al.	5,009,661 A	4/1991	Michelson
	10,250 A	9/1986		5,014,899 A 5,015,227 A		Presty et al. Broadwin et al.
,	10,383 A		Rothfuss et al.	5,013,227 A 5,024,671 A	6/1991	Tu et al.
	19,262 A 19,391 A	10/1986 10/1986	Sharkany et al.	5,027,834 A	7/1991	
	29,107 A		Fedotov et al.	5,031,814 A	7/1991	
	32,290 A		Green et al.	5,038,109 A 5,040,715 A	8/1991 8/1991	
	33,874 A 34.419 A		Chow et al.	5,040,713 A 5,042,707 A	8/1991	Taheri
,	34,419 A 41,076 A	2/1987	Kreizman et al.	5,061,269 A	10/1991	
	46,722 A		Silverstein et al.	5,062,563 A	11/1991	Green et al.
	55,222 A		Florez et al.	5,065,929 A	11/1991	Schulze et al. Rodak et al.
	62,555 A		Thornton	5,071,052 A 5,071,430 A	12/1991	
	63,874 A 64,305 A		Sano et al. Blake, III et al.	5,074,454 A	12/1991	Peters
	65,916 A	5/1987		5,080,556 A		Carreno
	67,674 A		Korthoff et al.	5,083,695 A 5,084,057 A		Foslien et al. Green et al.
	69,647 A 71,445 A	6/1987	Storace Barker et al.	5,088,979 A		Filipi et al.
	76,245 A		Fukuda	5,088,997 A		Delahuerga et al.
	84,051 A		Akopov et al.	5,094,247 A		Hernandez et al.
	93,248 A	9/1987		5,100,420 A 5,104,025 A	3/1992 4/1992	Green et al. Main et al.
	08,141 A 09,120 A	11/1987	Inoue et al.	5,104,397 A	4/1992	
	15,520 A		Roehr, Jr. et al.	5,106,008 A	4/1992	Tompkins et al.
4,7	19,917 A	1/1988	Barrows et al.	5,111,987 A	5/1992	
	27,308 A		Huljak et al.	5,116,349 A 5,122,156 A	5/1992 6/1992	Aranyi Granger et al.
	28,020 A 28,876 A		Green et al. Mongeon et al.	5,129,570 A	7/1992	Schulze et al.
	29,260 A		Dudden	5,137,198 A		Nobis et al.
4,73	30,726 A		Holzwarth	5,139,513 A	8/1992	Segato
	41,336 A		Failla et al.	5,141,144 A 5,142,932 A		Foslien et al. Moya et al.
	43,214 A 47,820 A		Tai-Cheng Hornlein et al.	5,155,941 A	10/1992	Takahashi et al.
	50,902 A		Wuchinich et al.	5,156,315 A	10/1992	
	52,024 A		Green et al.	5,156,609 A	10/1992	
	54,909 A 67,044 A	7/1988 8/1988	Barker et al.	5,156,614 A 5,158,567 A	10/1992	Green et al.
	73,420 A	9/1988		D330,699 S	11/1992	
	77,780 A		Holzwarth	5,163,598 A		Peters et al.
	87,387 A		Burbank, III et al.	5,171,247 A 5,171,249 A	12/1992 12/1992	Hughett et al. Stefanchik et al.
	90,225 A 05,617 A		Moody et al. Bedi et al.	5,171,249 A 5,171,253 A		Klieman et al.
	05,823 A		Rothfuss	5,188,111 A	2/1993	
4,80	09,695 A	3/1989	Gwathmey et al.	5,190,517 A	3/1993	
	17,847 A		Redtenbacher et al.	5,192,288 A	3/1993	Thompson et al.
4,8	19,853 A 21,939 A	4/1989 4/1989		5,195,968 A 5,197,648 A	3/1993 3/1993	Lundquist et al. Gingold
	21,939 A 27,911 A		Broadwin et al.	5,200,280 A	4/1993	
4,83	34,720 A	5/1989	Blinkhorn	5,205,459 A	4/1993	Brinkerhoff et al.
,	44,068 A		Arata et al.	5,207,697 A	5/1993	Carusillo et al.
	48,637 A	7/1989		5,209,747 A	5/1993	Knoepfler
	65,030 A 69,414 A	9/1989 9/1989	Green et al.	5,211,649 A 5,211,655 A	5/1993 5/1993	Kohler et al. Hasson
	69,414 A	9/1989		5,217,055 A 5,217,457 A		Delahuerga et al.
-,	,			· · ·	_	<i>U</i>

(56)		Refere	ences Cited	5,364,001		11/1994	Bryan Williamson, IV
	ī	IS DATEN	T DOCUMENTS	5,364,003 5,366,134			Green et al.
	(J.S. PATEN	1 DOCUMENTS	5,366,479			McGarry et al.
	5,217,478	A 6/199	3 Rexroth	5,368,015	A	11/1994	Wilk
	5,219,111	A 6/1993	Bilotti et al.	5,368,592			Stern et al.
	5,221,036		3 Takase	5,370,645 5,372,596			Klicek et al. Klicek et al.
	5,221,281 <i>x</i> 5,222,963 <i>x</i>		3 Klicek 3 Brinkerhoff et al.	5,372,602		12/1994	
	5,222,903		3 Crainich	5,374,277	A	12/1994	
	5,222,976		3 Yoon	5,376,095		12/1994	
	5,223,675		3 Taft	5,379,933 5,381,782			Green et al. DeLaRama et al.
	5,234,447 <i>x</i> 5,236,440 <i>x</i>		3 Kaster et al. 3 Hlavacek	5,382,247			Cimino et al.
	5,239,981		3 Anapliotis	5,383,880			Hooven
	5,240,163		3 Stein et al.	5,383,881			Green et al.
	5,242,457	A 9/1993	3 Akopov et al.	5,383,888			Zvenyatsky et al.
	5,244,462		Belahuerga et al.	5,383,895 5,389,098	A		Holmes et al. Tsuruta et al.
	5,246,156 A		Rothfuss et al. Mai	5,389,104			Hahnen et al.
	5,253,793		Green et al.	5,391,180			Tovey et al.
	5,258,009		3 Conners	5,392,979			Green et al.
	5,258,012		3 Luscombe et al.	5,395,030 5,395,033			Kuramoto et al. Byrne et al.
	5,259,366 a 5,260,637 a		3 Reydel et al. 3 Pizzi	5,395,034		3/1995	
	5,263,629		3 Trumbull et al.	5,395,312	A	3/1995	Desai
	5,263,973		3 Cook	5,395,384			Duthoit
	5,268,622		3 Philipp	5,397,046			Savage et al. Carroll et al.
	5,271,543		Grant et al.	5,397,324 5,403,312			Yates et al.
	5,271,544 A RE34,519 I		Fox et al. Fox et al.	5,405,072			Zlock et al.
	5,275,323		Schulze et al.	5,405,073		4/1995	
	5,275,608		Forman et al.	5,405,344			Williamson et al.
	5,279,416		4 Malec et al.	5,405,360 5,407,293		4/1995	Tovey Crainich
	5,281,216 A		4 Klicek 4 Haber et al.	5,409,498			Braddock et al.
	5,282,829		4 Hermes	5,411,508		5/1995	Bessler et al.
	5,284,128		4 Hart	5,413,267			Solyntjes et al.
	5,285,945		4 Brinkerhoff et al.	5,413,268			Green et al.
	5,289,963		4 McGarry et al.	5,413,272 5,413,573			Green et al. Koivukangas
	5,297,714 <i>x</i> 5,304,204 <i>x</i>		4 Kramer 4 Bregen	5,415,334			Williamson, IV et al.
	5,307,976	A 5/199	4 Olson et al.	5,415,335			Knodell, Jr.
	5,309,927	A 5/199	4 Welch	5,417,203			Tovey et al.
	5,312,023		Green et al.	5,417,361 5,421,829			Williamson, IV Olichney et al.
	5,312,024 <i>b</i> 5,312,329 <i>b</i>		4 Grant et al. 4 Beaty et al.	5,422,567			Matsunaga
	5,314,424		4 Nicholas	5,423,471	A	6/1995	Mastri et al.
	5,314,445		Heidmueller et al.	5,423,809		6/1995	
	5,318,221		4 Green et al.	5,425,745 5,431,322			Green et al. Green et al.
	5,330,487 <i>x</i> 5,330,502 <i>x</i>		Thornton et al. Hassler et al.	5,431,654		7/1995	
	5,332,142		4 Robinson et al.	5,431,668			Burbank, III et al.
	5,333,422		Warren et al.	5,433,721			Hooven et al.
	5,333,772		4 Rothfuss et al.	5,437,681 5,438,302		8/1995 8/1995	Meade et al.
	5,334,183 A		4 Wuchinich 4 Green et al.	5,439,155		8/1995	
	5,339,799		4 Kami et al.	5,439,156	A		Grant et al.
	5,341,724	A 8/199	4 Vatel	5,439,479			Shichman et al.
	5,341,810		4 Dardel	5,441,191 5,441,193			Linden Gravener
	5,342,381 <i>x</i> 5,342,395 <i>x</i>		4 Tidemand 4 Jarrett et al.	5,441,483		8/1995	
	5,342,396		4 Cook	5,441,494	A	8/1995	
	5,344,060		Gravener et al.	5,445,155		8/1995	
	5,346,504		4 Ortiz et al.	5,445,304 5,445,644			Plyley et al.
	5,348,259		4 Blanco et al.	5,447,417		9/1995	Pietrafitta et al. Kuhl et al.
	5,350,388 a 5,350,391 a		4 Epstein 4 Iacovelli	5,447,513			Davison et al.
	5,350,400		4 Esposito et al.	5,449,355			Rhum et al.
	5,352,229	A 10/199	4 Goble et al.	5,449,365			Green et al.
	5,352,235		Koros et al.	5,449,370			Vaitekunas
	5,352,238 A 5,354,303 A		4 Green et al. 4 Spaeth et al.	5,452,836 5,452,837			Huitema et al. Williamson, IV et al.
	5,356,006		4 Alpern et al.	5,454,378			Palmer et al.
	5,358,506	A 10/199	4 Green et al.	5,454,827			Aust et al.
	5,358,510		4 Luscombe et al.	5,456,401			Green et al.
	5,359,231		Flowers et al.	5,458,579			Chodorow et al.
	D352,780 S		4 Glaeser et al. 4 Hutchinson, Jr.	5,462,215 5,464,013			Viola et al. Lemelson
	5,500,428	n 11/199	T THECHINSON, JI.	2, 404, 013	А	11/1773	Lemeison

(56)		Referen	ces Cited	5,556,416 5,558,665			Clark et al. Kieturakis
	U.S. I	PATENT	DOCUMENTS	5,558,671		9/1996	
	0.5.1		DOCUMENTS	5,560,530			Bolanos et al.
5,464,144	A	11/1995	Guy et al.	5,560,532			DeFonzo et al.
5,464,300	Α		Crainich	5,562,239			Boiarski et al.
5,465,894			Clark et al.	5,562,241 5,562,682			Knodel et al. Oberlin et al.
5,465,895			Knodel et al.	5,562,690			Green et al.
5,465,896 5,466,020			Allen et al. Page et al.	5,562,701			Huitema et al.
5,467,911			Tsuruta et al.	5,562,702		10/1996	Huitema et al.
5,468,253			Bezwada et al.	5,564,615			Bishop et al.
5,470,006		11/1995		5,569,161 5,569,270		10/1996	Ebling et al.
5,470,007 5,470,009		11/1995	Plyley et al.	5,569,284			Young et al.
5,470,009			Rothfuss et al.	5,571,090		11/1996	Sherts
5,472,132			Savage et al.	5,571,100			Goble et al.
5,472,442		12/1995	Klicek	5,571,116 5,571,285			Bolanos et al. Chow et al.
5,473,204		12/1995	Temple	5,573,543			Akopov et al.
5,474,057 5,474,566		12/1995 12/1995	Makower et al. Alesi et al.	5,574,431		11/1996	McKeown et al.
5,476,206			Green et al.	5,575,054		11/1996	Klinzing et al.
5,476,479	A		Green et al.	5,575,789			Bell et al.
5,478,003			Green et al.	5,575,799 5,575,803			Bolanos et al. Cooper et al.
5,478,354 5,480,089			Tovey et al. Blewett	5,575,805		11/1996	
5,480,409		1/1996		5,577,654		11/1996	
5,482,197			Green et al.	5,579,978			Green et al.
5,484,095			Green et al.	5,580,067			Hamblin et al.
5,484,398			Stoddard	5,582,611 5,582,617			Tsuruta et al. Klieman et al.
5,484,451 5,485,947			Akopov et al. Olson et al.	5,584,425			Savage et al.
5,485,952			Fontayne	5,586,711		12/1996	Plyley et al.
5,487,499		1/1996	Sorrentino et al.	5,588,579			Schnut et al.
5,487,500			Knodel et al.	5,588,580 5,588,581			Paul et al. Conlon et al.
5,489,058 5,489,256		2/1996 2/1996	Plyley et al.	5,591,170		1/1997	
5,496,312		3/1996		5,591,187		1/1997	
5,496,317			Goble et al.	5,597,107			Knodel et al.
5,497,933			DeFonzo et al.	5,599,151			Daum et al.
5,503,320			Webster et al.	5,599,344 5,599,350		2/1997	Paterson Schulze et al.
5,503,635 5,503,638			Sauer et al. Cooper et al.	5,601,224			Bishop et al.
5,505,363			Green et al.	5,603,443			Clark et al.
5,507,426	Α	4/1996	Young et al.	5,605,272			Witt et al.
5,509,596			Green et al.	5,605,273 5,607,094			Hamblin et al. Clark et al.
5,509,916 5,511,564		4/1996 4/1996	Taylor	5,607,095		3/1997	
5,514,129		5/1996		5,607,433	A		Polla et al.
5,514,157			Nicholas et al.	5,607,450			Zvenyatsky et al.
5,518,163			Hooven	5,609,285 5,609,601			Grant et al. Kolesa et al.
5,518,164			Hooven Heckele et al.	5,611,709			McAnulty
5,520,678 5,520,700			Beyar et al.	5,613,966			Makower et al.
5,522,817			Sander et al.	5,615,820		4/1997	
5,527,320			Carruthers et al.	5,618,294 5,618,303		4/1997 4/1997	Aust et al.
5,529,235			Boiarski et al.	5,618,307			Marlow et al. Donlon et al.
D372,086 5,531,744			Grasso et al. Nardella et al.	5,619,992			Guthrie et al.
5,533,521			Granger	5,620,289	A	4/1997	
5,533,581			Barth et al.	5,620,452		4/1997	
5,533,661			Main et al	5,624,452 5,626,587		4/1997 5/1997	Yates Bishop et al.
5,535,934 5,535,935			Boiarski et al. Vidal et al.	5,626,595		5/1997	Sklar et al.
5,535,937			Boiarski et al.	5,628,446		5/1997	Geiste et al.
5,540,375			Bolanos et al.	5,628,743			Cimino
5,541,376	A		Ladtkow et al.	5,628,745 5,630,539		5/1997	Bek Plyley et al.
5,542,594	A		McKean et al.	5,630,540			Blewett
5,542,949 5,543,119		8/1996 8/1996	Yoon Sutter et al.	5,630,541			Williamson, IV et al.
5,547,117			Hamblin et al.	5,630,782	A	5/1997	Adair
5,549,621	A	8/1996	Bessler et al.	5,632,432		5/1997	
5,549,628			Cooper et al.	5,632,433			Grant et al.
5,549,637 5,551,632		8/1996 9/1996	Crainich Voor	5,634,584 5,636,779			Okorocha et al. Palmer
5,551,622 5,553,675			Pitzen et al.	5,636,780			Green et al.
5,553,765			Knodel et al.	5,639,008		6/1997	
5,554,148	Α	9/1996	Aebischer et al.	5,643,291	A	7/1997	Pier et al.
5,554,169	A	9/1996	Green et al.	5,645,209	A	7/1997	Green et al.

(56)	Refere	nces Cited	5,728,110 A	3/1998	Vidal et al.
()			5,728,121 A		Bimbo et al.
	U.S. PATENT	DOCUMENTS	5,730,758 A		Allgeyer
			5,732,821 A		Stone et al.
5,647,526		Green et al.	5,732,871 A 5,732,872 A		Clark et al. Bolduc et al.
5,647,869 5,649,937		Goble et al. Bito et al.	5,733,308 A		Daugherty et al.
5,651,491		Heaton et al.	5,735,445 A		Vidal et al.
5,653,373		Green et al.	5,735,848 A		Yates et al.
5,653,374	A 8/1997	Young et al.	5,735,874 A		Measamer et al.
5,653,677		Okada et al.	5,738,474 A 5,738,648 A		Blewett Lands et al.
5,653,721		Knodel et al. Yoon	5,743,456 A		Jones et al.
5,655,698 5,657,921		Young et al.	5,747,953 A		Philipp
5,658,281		Heard	5,749,889 A		Bacich et al.
5,658,300		Bito et al.	5,749,893 A		Vidal et al.
5,658,307		Exconde	5,752,644 A		Bolanos et al.
5,662,258		Knodel et al.	5,752,965 A 5,755,717 A		Francis et al. Yates et al.
5,662,260 5,662,662	A 9/1997	Yoon Bishop et al.	5,758,814 A		Gallagher et al.
5,665,085		Nardella	5,762,255 A		Chrisman et al.
5,667,517		Hooven	5,762,256 A		Mastri et al.
5,667,526	A 9/1997	Levin	5,766,188 A	6/1998	
5,667,527		Cook	5,766,205 A 5,769,892 A		Zvenyatsky et al. Kingwell
5,669,544		Schulze et al. Platt, Jr. et al.	5,772,379 A		Evensen
5,669,904 5,669,907		Platt, Jr. et al.	5,772,578 A		Heimberger et al.
5,669,918		Balazs et al.	5,772,659 A	6/1998	Becker et al.
5,673,840		Schulze et al.	5,776,130 A		Buysse et al.
5,673,841		Schulze et al.	5,779,130 A * 5,779,131 A		Alesi et al 227/176.1 Knodel et al.
5,673,842		Bittner et al.	5,779,131 A 5,779,132 A		Knodel et al.
5,674,286 5,678,748		D'Alessio et al. Plyley et al.	5,782,396 A		Mastri et al.
5,680,981		Mililli et al.	5,782,397 A	7/1998	Koukline
5,680,982		Schulze et al.	5,782,749 A	7/1998	
5,680,983		Plyley et al.	5,782,859 A		Nicholas et al. Izumisawa
5,683,349		Makower et al.	5,784,934 A 5,785,232 A		Vidal et al.
5,685,474 5,686,090		Seeber Schilder et al.	5,785,647 A		Tompkins et al.
5,688,270		Yates et al.	5,787,897 A		Kieturakis
5,690,269		Bolanos et al.	5,792,135 A		Madhani et al.
5,692,668		Schulze et al.	5,792,165 A		Klieman et al.
5,693,020			5,794,834 A 5,796,188 A	8/1998	Hamblin et al.
5,693,042 5,693,051		Boiarski et al. Schulze et al.	5,797,536 A	8/1998	Smith et al.
5,695,494		Becker	5,797,537 A	8/1998	Oberlin et al.
5,695,502		Pier et al.	5,797,538 A		Heaton et al.
5,695,504		Gifford, III et al.	5,797,906 A		Rhum et al.
5,695,524		Kelley et al.	5,797,959 A 5,799,857 A	8/1998 9/1998	Castro et al. Robertson et al.
5,697,543 5,697,943		Burdorff Sauer et al.	5,800,379 A		Edwards
5,700,270		Peyser et al.	5,806,676 A		Wasgien
5,702,387	A 12/1997	Arts et al.	5,807,376 A		Viola et al.
5,702,408		Wales et al.	5,807,378 A 5,807,393 A		Jensen et al. Williamson, IV et al.
5,702,409		Rayburn et al.	5,807,393 A 5,809,441 A		McKee
5,704,087 5,704,534		Strub Huitema et al.	5,810,721 A		Mueller et al.
5,706,997		Green et al.	5,810,811 A		Yates et al.
5,706,998	A 1/1998	Plyley et al.	5,810,846 A		Virnich et al.
5,707,392		Kortenbach	5,810,855 A 5,813,813 A		Rayburn et al. Daum et al.
5,709,334		Sorrentino et al.	5,814,055 A		Knodel et al.
5,709,680 5,709,706		Yates et al. Kienzle et al.	5,814,057 A		Oi et al.
5,711,472		Bryan	5,816,471 A		Plyley et al.
5,713,128	A 2/1998	Schrenk et al.	5,817,084 A	10/1998	
5,713,505		Huitema	5,817,091 A 5,817,093 A		Nardella et al. Williamson, IV et al.
5,713,895 5,713,896		Lontine et al. Nardella	5,817,109 A		McGarry et al.
5,713,920		Bezwada et al.	5,817,119 A		Klieman et al.
5,715,987		Kelley et al.	5,820,009 A	10/1998	Melling et al.
5,715,988	A 2/1998	Palmer	5,823,066 A		Huitema et al.
5,716,366		Yates	5,826,776 A		Schulze et al.
5,718,359		Palmer et al.	5,827,271 A		Buysse et al.
5,718,360 5,718,548		Green et al. Cotellessa	5,827,298 A 5,829,662 A		Hart et al. Allen et al.
5,720,744		Eggleston et al.	5,829,002 A 5,833,690 A		Yates et al.
D393,067		Geary et al.	5,833,695 A	11/1998	
5,725,536		Oberlin et al.	5,833,696 A		Whitfield et al.
5,725,554	A 3/1998	Simon et al.	5,836,503 A	11/1998	Ehrenfels et al.
			6		

(56)		Referen	ces Cited	6,039,733 6,039,734		3/2000 3/2000	Buysse et al.
	11 2 11	DATENT	DOCUMENTS	6,042,601		3/2000	
	0.5.1	AILINI	DOCUMENTS	6,045,560			McKean et al.
5.9	836,960 A	11/1008	Kolesa et al.	6,047,861			Vidal et al.
	839,639 A		Sauer et al.	6,050,472			Shibata
	843,021 A		Edwards et al.	6,050,990			Tankovich et al.
	843,096 A	12/1998	Igaki et al.	6,050,996			Schmaltz et al.
5,8	843,122 A	12/1998		6,053,390			Green et al.
	843,132 A	12/1998		6,053,922 RE36,720			Krause et al. Green et al.
	846,254 A		Schulze et al.	6,056,735			Okada et al.
	849,011 A 855,311 A		Jones et al. Hamblin et al.	6,056,746			Goble et al.
	855,583 A		Wang et al.	6,062,360	A	5/2000	Shields
	860,581 A		Robertson et al.	6,063,097			Oi et al.
	860,975 A		Goble et al.	6,063,098			Houser et al.
	865,361 A		Milliman et al.	6,065,919 6,066,132		5/2000	Chen et al.
	868,760 A		McGuckin, Jr. Williamson, IV et al.	6,068,627			Orszulak et al.
	871,135 A 873,885 A		Weidenbenner	6,071,233			Ishikawa et al.
	876,401 A		Schulze et al.	6,074,386	A		Goble et al.
	878,193 A		Wang et al.	6,074,401			Gardiner et al.
	878,937 A		Green et al.	6,077,286			Cuschieri et al.
	878,938 A		Bittner et al.	6,079,606 6,082,577			Milliman et al. Coates et al.
	891,160 A		Williamson, IV et al.	6,083,191		7/2000	
	893,506 A 893,835 A	4/1999	Witt et al.	6,083,234			Nicholas et al.
	894,979 A	4/1999		6,083,242		7/2000	Cook
	897,552 A		Edwards et al.	6,086,600			Kortenbach
	897,562 A		Bolanos et al.	6,090,106			Goble et al.
	899,914 A		Zirps et al.	6,093,186 6,099,537		7/2000	
	901,895 A		Heaton et al.	6,099,551			Sugai et al. Gabbay
	902,312 A 904,693 A		Frater et al. Dicesare et al.	6,102,271			Longo et al.
	904,093 A 906,625 A		Bito et al.	6,109,500			Alli et al.
	908,402 A	6/1999		6,117,148	A	9/2000	Ravo et al.
	908,427 A		McKean et al.	6,117,158			Measamer et al.
	911,353 A		Bolanos et al.	6,119,913			Adams et al.
	915,616 A		Viola et al.	6,120,433 6,123,241			Mizuno et al. Walter et al.
	918,791 A 919,198 A		Sorrentino et al. Graves, Jr. et al.	H1904			Yates et al.
5,5	921,956 A		Grinberg et al.	6,126,058			Adams et al.
	928,256 A	7/1999		6,126,670			Walker et al.
	931,847 A		Bittner et al.	6,131,789			Schulze et al.
	931,853 A		McEwen et al.	6,131,790 6,132,368		10/2000 10/2000	
	937,951 A		Izuchukwu et al.	6,139,546			Koenig et al.
,	938,667 A 941,442 A		Peyser et al. Geiste et al.	6,149,660			Laufer et al.
	944,172 A		Hannula	6,152,935			Kammerer et al.
	944,715 A		Goble et al.	6,155,473			Tompkins et al.
5,9	947,984 A		Whipple	6,156,056			Kearns et al.
	948,030 A	9/1999		6,159,146 6,159,200			El Gazayerli Verdura et al.
	951,552 A		Long et al.	6,162,208		12/2000	
	951,574 A 951,581 A		Stefanchik et al. Saadat et al.	6,165,175			Wampler et al.
	954,259 A	9/1999		6,165,184			Verdura et al.
	964,774 A	10/1999	McKean et al.	6,165,188			Saadat et al.
	971,916 A	10/1999		6,168,605			Measamer et al.
	984,949 A	11/1999		6,171,316 6,171,330			Kovac et al. Benchetrit
	988,479 A 997,528 A	11/1999	Bisch et al.	6,174,308			Goble et al.
	997,528 A 997,552 A		Person et al.	6,174,309			Wrublewski et al.
	003,517 A	12/1999	Sheffield et al.	6,179,195		1/2001	Adams et al.
	004,319 A	12/1999		6,179,776			Adams et al.
	010,054 A		Johnson et al.	6,181,105 6,182,673			Cutolo et al. Kindermann et al.
	010,513 A		Törmälä et al.	6,187,003			Buysse et al.
	012,494 A 013,076 A	1/2000	Goble et al.	6,190,386		2/2001	
	015,406 A		Goble et al.	6,193,129	B1	2/2001	Bittner et al.
	017,322 A		Snoke et al.	6,197,042			Ginn et al.
6,0	017,356 A		Frederick et al.	6,200,330			Benderev et al.
	022,352 A		Vandewalle	6,202,914			Geiste et al.
	024,741 A		Williamson, IV et al.	6,206,897			Jamiolkowski et al.
	024,748 A		Manzo et al.	6,210,403 6,213,999		4/2001	Klicek Platt, Jr. et al.
	027,501 A 032,849 A		Goble et al. Mastri et al.	6,213,999			Yoon et al.
	032,849 A 033,378 A		Lundquist et al.	6,220,368			Ark et al.
	033,399 A	3/2000		6,223,835			Habedank et al.
	033,427 A	3/2000		6,224,617			Saadat et al.
,							

(56)		Referen	ces Cited	6,450,391 6,450,989			Kayan et al. Dubrul et al.
	II S I	DATENIT	DOCUMENTS	6,454,781			Witt et al.
	0.3.	FAILINI	DOCUMENTS	6,468,275			Wampler et al.
6,228,08	1 B1	5/2001	Goble	6,471,106		10/2002	
6,228,08			Lands et al.	6,478,210	B2	11/2002	Adams et al.
6,228,08			Kirwan, Jr.	6,482,200			Shippert
6,231,56			Tovey et al.	6,485,490		11/2002	
6,234,17			Goble et al.	6,485,667 6,488,196		11/2002	Fenton, Jr.
6,241,13			Milliman et al.	6,488,197			Whitman
6,241,14 6,241,72			Adams et al. Heim et al.	6,491,201			Whitman
6,248,11		6/2001		6,491,690		12/2002	Goble et al.
6,249,07			Madden et al.	6,491,701			Tierney et al.
6,250,53			Green et al.	6,492,785			Kasten et al.
6,258,10			Balázs et al.	6,494,896			D'Alessio et al.
6,261,28			Goble et al.	6,500,176 6,500,194			Truckai et al. Benderev et al.
6,264,08 6,264,08			McGuckin, Jr. Whitman	6,503,257			Grant et al.
6,270,50			Klieman et al.	6,503,259			Huxel et al.
6,273,87			Klima et al.	6,505,768	B2		Whitman
6,273,89			Dalessandro et al.	6,510,854		1/2003	
6,277,11		8/2001	Bullivant et al.	6,511,468			Cragg et al.
6,293,94			Goble et al.	6,517,528 6,517,535			Pantages et al. Edwards
6,296,64			Wampler et al.	6,517,565			Whitman et al.
6,302,31 6,305,89	1 B1		Adams et al. Burlingame	6,517,566			Hoyland et al.
6,306,13			Goble et al.	6,522,101			Malackowski
6,306,14		10/2001		6,533,157	В1	3/2003	Whitman
6,309,40			Minor et al.	6,533,784			Truckai et al.
6,315,18		11/2001	Whitman	6,535,764			Imran et al.
6,320,12		11/2001		6,543,456 6,545,384			Freeman
6,322,49			Bullivant et al.	6,547,786		4/2003	Pelrine et al.
6,324,33 6,325,79		12/2001	Hudson et al.	6,550,546		4/2003	Thurler et al.
6,325,81			Hamilton et al.	6,551,333			Kuhns et al.
6,330,96			Milliman et al.	6,554,861			Knox et al.
6,331,18			Tierney et al.	6,558,379			Batchelor et al.
6,331,76			Kumar et al.	6,565,560			Goble et al.
6,333,02			Vyakarnam et al.	6,569,085 6,569,171			Kortenbach et al. DeGuillebon et al.
6,334,86		1/2002		6,578,751			Hartwick
6,334,86 6,336,92		1/2002	Chandler et al.	6,582,427			Goble et al.
6,338,73			Toledano	6,583,533	B2		Pelrine et al.
6,343,73			Adams et al.	6,585,144			Adams et al.
6,346,07	7 B1	2/2002	Taylor et al.	6,588,643			Bolduc et al.
6,352,50			Matsui et al.	6,589,164 6,592,538			Flaherty Hotchkiss et al.
6,352,53			Kramer et al.	6,592,597			Grant et al.
6,358,22 6,364,87			Tims et al. Goble et al.	6,596,296		7/2003	
6,364,88			Niemeyer et al.	6,596,304	B1	7/2003	Bayon et al.
6,370,98			Watarai	6,596,432		7/2003	Kawakami et al.
6,373,15	2 B1		Wang et al.	D478,665		8/2003	Isaacs et al.
6,383,20		5/2002		D478,986			Johnston et al.
6,387,11			Hawkins et al.	6,601,749 6,602,252			Sullivan et al. Mollenauer
6,387,11 6,391,03			Adams Vargas et al.	6,602,262			Griego et al.
6,398,78			Goble et al.	6,605,078			Adams
6,398,79			Bombard et al.	6,605,669			Awokola et al.
6,402,76	6 B2		Bowman et al.	6,607,475			Doyle et al.
6,406,44			Stefanchik	6,616,686 6,619,529			Coleman et al. Green et al.
6,409,72			Penny et al.	6,620,166			Wenstrom, Jr. et al.
H203 6,413,27		7/2002	Yates et al.	6,626,834			Dunne et al.
6,416,48			Wampler	6,629,630		10/2003	
6,416,50			Goble et al.	6,629,974			Penny et al.
6,419,69		7/2002	Gabbay	6,629,988			Weadock
RE37,81			Allgeyer	6,636,412		10/2003	
6,428,07			Takanashi et al.	6,638,108 6,638,285		10/2003 10/2003	
6,429,61		8/2002		6,638,297			Huitema
6,436,09 6,436,10			Nardella Wang et al.	RE38,335			Aust et al.
6,436,11	0 B2		Bowman et al.	6,641,528		11/2003	
6,436,12			Frank et al.	6,644,532			Green et al.
6,439,43			Rickard et al.	6,645,201			Utley et al.
6,439,44			Perry et al.	6,646,307			Yu et al.
6,440,14			Nicholas et al.	6,648,816			Irion et al.
6,443,97			Whitman	6,652,595		11/2003	
6,447,51	8 BI	9/2002	Krause et al.	D484,243	S	12/2003	Ryan et al.

U.S. PATENT DOCUMENTS 6.821,278 B 2 112009 112004 112005 112007 112012007 11	(56)		Referen	ces Cited	6,820,79		11/2004	
D484,596 S 122003 Ryan et al. 6,227,725 22 122004 Tovey et al. 6,227,725 22 122004 Tovey et al. 6,227,725 22 122004 Casclen et al. 6,227,725 22 122005 Casclen et al. 6,227,928 22 122004 Myono Goode et al. 6,227,226 22 Casclen et al. 6,227,226 22 Casc		II S	PATENT	DOCUMENTS				
1948 506 8 122003 Ryan et al. 6.828/195 122004 Casden et al. 6.656 178 122005 Casden 6.656 178 122005 Casden 6.666 188 122005 Casden 6.830,174 182 122005 Casden 6.830,174 182 122005 Casden 6.830,178 182 122005 Casden 6.840,178 182 122005 Casden		U.S.	FAILINI	DOCOMENTS				
Dalis, 1966 S. 1972 Dalis, 1972 Da	D484.595	S	12/2003	Rvan et al.				
Georgia Grant et al. G. G. G. G. G. G. G.			12/2003	Ryan et al.				
6.666.875 BI 122003 Kovac et al. 6.832.998 BZ 122004 Mycno 6.666.875 BI 122003 Sakuni et al. 6.835.199 BZ 122004 Mycno								
Content Cont								
6.666,875 B1 12/2003 Sakiriar et al. 6.835,336 B2 12/2004 Watt 6.667,185 B2 12/2003 Milliman et al. 6.835,336 B2 12/2004 Watt 6.667,185 B2 12/2003 Dival 6.843,438 B2 12/2005 Milliman et al. 6.837,346 B2 12/2005 Milliman et al. 6.843,438 B2 12/2005 Milliman et al. 6.846,378 B2 12/2005 Milliman et al. 6.846,308 B2 12/2005 Milliman et al. 6.846,308 B2 12/2005 Milliman et al. 6.846,309 B2 12/2005 Milliman et al. 6.846,409 B2 12/2005 Milliman et al. 6.846,								
6.667,825 B2 122003 Milliman et al. 6.835,336 B2 122004 Water 6 de 6.669,073 B2 122003 Milliman et al. 6.837,386 B2 122005 Saffice et al. 6.669,073 B2 122004 Waterpler et al. 6.846,423 B2 122005 Golden Georgia and Georgia					6,835,19	9 B2	12/2004	McGuckin, Jr. et al.
Content								
Disk1,977 S 1,2004 Ryan et al. 6,843,403 B2 1,2005 Whirman 6,670,260 B2 1,2004 Wampler et al. 6,843,630 B2 1,2005 Whirman et al. 6,679,260 B2 1,2004 Whirson et al. 6,846,308 B2 1,2005 Whirman et al. 6,681,978 B2 1,2004 Whirman et al. 6,846,309 B2 1,2005 Whirman et al. 6,681,978 B2 1,2004 Whirman et al. 6,886,277 B2 1,2004 Fracier et al. 6,886,309 B2 2,2005 Whirman et al. 6,682,527 B2 1,2004 Fracier et al. 6,887,308 E 2,2005 Goldine et al. 6,685,278 B2 1,2004 Fracier et al. 6,887,308 E 2,2005 Goldine et al. 6,685,278 B2 2,2004 Fracier et al. 6,887,478 E 3,2005 Goldine et al. 6,686,138 B1 2,2004 Value et al. 6,886,148 B1 3,2005 Milling et al. 6,686,138 B1 2,2004 Adams et al. 6,886,148 B2 3,2005 Adams et al. 6,886,148 B2 3,2005 Adams et al. 6,886,148 B2 3,2005 Milling et al. 6,886,148 B2 3,2005 Milling et al. 6,886,148 B2 3,2005 Milling et al. 6,886,149 B2 3,2005 Milling et al. 6,886,149 B2 3,2005 Milling et al. 6,876,469 B2 4,2005 Green et al. 6,876,476 B2 4,2005 Green et al. 6,786,476 B2 4,2005 Green et al. 6,886,116 B2 5,2005 Golde et al. 6,886,138 B2 5,2005 Golde et al. 6,986,438 B2 5,2005 Golde et al. 6,986,438 B2 5,2005 Golde et al. 6,986,438 B2 5,								
6,776,669 B2 12,004 Wampler et al. 6,841,789 B2 12,005 Gobbe 6,707,410 B2 12,004 Warshed et al. 6,846,307 B2 12,005 Whitman et al. 6,672,630 B2 12,005 Whitman et al. 6,681,979 B2 12,004 Whitman 6,840,071 B2 2,005 Whitman et al. 6,681,979 B2 12,004 Whitman 6,840,071 B2 2,005 Whitman et al. 6,682,528 B2 12,004 Whitman 6,880,071 B2 2,005 Obline et al. 6,685,778 B2 2,005 Strul 6,685,787 B2 2,005 Strul 6,685,109 B1 2,005 Strul 6,695,108 B1 2,005 Strul 6,695,108 B1 2,005 Strul 6,695,108 B1 2,005 Strul 6,695,108 B2 2,000 Whitman 6,696,435 B2 3,005 Strul 6,695,108 B2 2,000 Whitman 6,696,435 B2 3,000 Strul Myers 6,787,647 B2 4,000 Strul Green 6,705,503 B1 3,000 Pedicini et al. 6,876,647 B2 4,000 Green et al. 6,705,630 B1 3,000 Pedicini et al. 6,881,405 B2 5,000 Strul Green et al. 6,705,630 B1 3,000 Pedicini et al. 6,881,405 B2 5,000 Strul Green et al. 6,705,630 B1 4,000 Whitman 6,906,497 B2 6,000 Strul Green et al. 6,705,630 B1 4,000 Whitman 6,906,497 B2 6,000 Strul Green et al. 6,705,637 B2 6,700 Strul et al. 6,705,638 B2 7,000 Strul et al. 6,705,638 B2 7,00								
6,679,269 B2 1/2004 Wirsch et al. 6,846,308 B2 1/2005 Whitman et al. 6,846,309 B2 1/2005 Whitman et al. 6,868,173 B2 1/2004 Fisher et al. 6,858,005 B2 2/2005 Whitman et al. 6,868,173 B2 1/2005 Skiba 6,860,345 B2 1/2005 Skiba 6,860,345 B2 1/2005 Skiba 6,860,349 B2 3/2005 Skiba 6,860,345 B2 3/2005 Whitman 6,872,214 B2 3/2005 Skiba 6,800,345 B2 3/2005 Whitman 6,872,214 B2 3/2005 Skiba 6,800,345 B2 3/2005 Whitman 6,872,214 B2 3/2005 Skiba 1/2005 Skiba 6,800,345 B2 3/2005 Skiba 6,800,345								
6.681,979 B2 12004 Whitman 6.846,309 B2 12005 Whitman et al. 6.861,979 B2 12004 Whitman 6.849,071 B2 12005 Whitman et al. 6.862,528 B2 12004 Strul 6.868,137 B2 12005 Whitman et al. 6.868,137 B2 12005 Whitman et al. 6.868,137 B2 12005 Whitman et al. 6.868,137 B2 12004 Fisher et al. 6.861,42 B3 32005 Whitman et al. 6.868,137 B3 12004 Skiba 6.863,039 B3 32005 Whitman et al. 6.868,142 B3 32005 Whitman et al. 6.868,142 B3 32005 Whitman et al. 6.868,143 B4 32005 Skiba 6.868,142 B4 32005 Skiba 6.868,142 B4 32005 Skiba 6.868,142 B4 32005 Skiba 6.868,143 B4 32005 Skiba 6.874,669 B2 42005 Skiba 6.874,669 B2 42005 Skiba 6.874,669 B2 42005 Skiba 6.878,106 B1 42005 Skiba 6.878,106 Sk								
6.681.978 B2 1/2004 Whitman 6.849.971 B2 2/2005 Whitman et al. 6.681.978 B2 1/2004 Whitman 6.849.971 B2 2/2005 Ohinnan et al. 6.682.527 B2 1/2004 Strul 6.858.905 B2 2/2005 Ohinnan et al. 6.682.527 B2 1/2004 Fisher et al. 6.863.142 B1 3/2005 Ohinnan et al. 6.866.872 B2 1/2004 Fisher et al. 6.863.142 B1 3/2005 Wilkie et al. 6.863.138 B1 2/2004 Skiba 6.863.948 B1 3/2005 Skiba 6.863.948 B1 3/2005 Skiba 6.863.948 B1 3/2005 Skiba 6.863.948 B1 3/2005 Skiba 6.863.948 B2 2/2004 Adams et al. 6.866.678 B2 3/2005 Adams et al. 6.866.951 B2 3/2005 Adams et al. 6.866.951 B2 2/2004 Whitman 6.827.344 B2 3/2005 Million et al. 6.869.349 B2 2/2004 Whitman 6.827.344 B2 3/2005 Adams et al. 6.869.349 B2 2/2004 Whitman 6.827.344 B2 3/2005 Myers 6.878.06 B1 3/2004 Whitman 6.877.647 B2 4/2005 Adams et al. 6.869.358 B2 3/2004 Whitman 6.877.647 B2 4/2005 Adams et al. 6.869.358 B2 3/2004 Whitman 6.877.647 B2 4/2005 Adams et al. 6.869.358 B2 3/2004 Whitman 6.877.647 B2 4/2005 Adams et al. 6.869.358 B2 3/2004 Whitman 6.877.647 B2 4/2005 Green et al. 6.809.358 B2 3/2004 Whitman 6.877.647 B2 4/2005 Green et al. 6.809.358 B2 3/2004 Whitman 6.889.116 B2 5/2005 Green et al. 6.809.348 B2 3/2004 Whitman 6.889.116 B2 5/2005 Green et al. 6.809.345 B2 5/2005 Green et al. 6.809.345 B2 5/2005 Green et al. 6.809.345 B2 5/2005 Green et al. 6.909.549 B2 6/2005 Wayayze et al. 6.809.345 B2 5/2005 Green et al. 6.909.549 B2 6/2005 Wayayze et								
6,682,527 B2 12,004 Strul 6,888,005 B2 2,2005 Sollane et al. 6,682,727 B2 2,2004 Fisher et al. 6,861,142 B1 3,2005 Sollane et al. 6,863,173 B1 2,2004 Sikba 6,863,163 B1 2,2004 Sikba 6,863,163 B1 2,2005 Sollane et al. 6,865,173 B2 2,2004 Sikba 6,863,163 B2 2,2005 Sollane et al. 6,865,173 B2 2,2004 Adams et al. 6,866,173 B2 3,2005 Adams et al. 6,866,173 B2 3,2005 Adams et al. 6,869,159 B2 2,2004 Whitman 6,872,214 B2 3,2005 Adams et al. 6,869,153 B2 3,2005 Adams et al. 6,874,666 B2 4,2005 Adams et al. 6,874,667 B2 4,2005 Adams et al. 6,878,166 B1 4,2005 Hermann 6,709,447 B2 3,2004 Adams et al. 6,887,167 B1 4,2005 Hermann 6,709,478 B2 3,2004 Adams et al. 6,887,167 B1 4,2005 Hermann 6,712,773 B1 3,2004 Vidal 6,893,435 B2 2,2005 Globle Adams et al. 6,908,472 B2 4,2005 Globle Adams et al. 6,908,472 B2 4,2005 Globle Adams et al. 6,908,472 B2 4,2004 Vidal et al. 6,908,472 B2 4,2004 Vidal et al. 6,908,472 B2 4,2004 Vidal et al. 6,908,472 B2 4,2004 Hermon, Ir. 6,908,472 B2 4,2004 Hermon, Ir. 6,913,579 B2 4,2004 Hermon, Ir. 6,913,579 B2 4,2004 Globle et al. 6,913,579 B2 4,2004 Globle et al. 6,913,679 B2 4,2005 Globle 4,200	6,681,978	B2	1/2004	Geiste et al.				
6,682,528 B2 12,004 Finzir et al. 6,681,142 B1 3,2005 Solicion et al. 6,681,142 B1 3,2005 Swilkie et al. 6,681,142 B1 3,2005 Swilkie et al. 6,692,507 B2 2,2004 Pugsley et al. 6,866,671 B2 3,2005 Swilkie et al. 6,695,198 B2 2,2004 Whitman 6,866,671 B2 3,2005 Salams et al. 6,695,198 B2 2,2004 Whitman 6,866,671 B2 3,2005 Salake, III 6,698,643 B2 3,2005 Salake, III 6,698,643 B2 3,2004 Whitman 6,872,144 B2 3,2005 Salake, III 6,698,643 B2 3,2004 Whitman 6,874,669 B2 4,2005 Green et al. 6,704,210 B1 3,2004 Whitman 6,874,669 B2 4,2005 Green et al. 6,704,210 B1 3,2004 Pedicini et al. 6,878,106 B1 4,2005 Green et al. 6,705,503 B1 3,2004 Volid 6,893,431 B2 2,2005 Solid 6,704,210 B1 3,2004 Volid 6,893,431 B2 2,2005 Solid 6,712,773 B1 3,2004 Volid 6,893,431 B2 2,2005 Solid 6,716,223 B1 4,2004 Volid 6,995,497 B2 6,2005 Swayze et al. 6,716,223 B1 4,2004 Volid 41 6,995,497 B2 6,2005 Swayze et al. 6,716,233 B1 4,2004 Volid 41 6,995,497 B2 6,2005 Swayze et al. 6,723,087 B2 4,2004 Volid et al. 6,993,472 B2 6,2005 Swayze et al. 6,723,087 B2 4,2004 Volid et al. 6,913,79 B2 2,0005 Solid 6,993,491 B2 2,0005 So								
6,685,727 B2 2,2004 Fisher et al. 6,861,642 B1 3,2005 Soyce et al. 6,692,507 B2 2,2004 Puglely et al. 6,866,671 B2 3,2005 Adams et al. 6,692,507 B3 2,2004 Adams et al. 6,866,671 B2 3,2005 Sireney et al. 6,695,198 B2 2,2004 Whirman 6,866,671 B2 3,2005 Sireney et al. 6,695,198 B2 2,2004 Whirman 6,872,214 B2 3,2005 Somenschein et al. 6,698,255 B2 3,2004 Wallace et al. 6,874,669 B2 4,2005 Adams et al. 6,699,235 B2 3,2004 Wyers 6,877,647 B2 4,2005 Adams et al. 6,704,210 B1 3,2004 Wyers 6,877,647 B2 4,2005 Adams et al. 6,709,540 B1 3,2004 Wyers 6,877,647 B2 4,2005 Green et al. 6,709,540 B1 3,2004 Wyers 6,878,106 B1 4,2005 Herrmann 6,709,5445 B2 3,2004 Wyers 6,878,106 B1 4,2005 Herrmann 6,716,723 B2 4,2004 Leopold et al. 6,893,435 B2 5,2005 Goble 6,716,232 B1 4,2004 Vidala 6,995,979 B2 6,2005 Swayre et al. 6,716,232 B1 4,2004 Whirman 6,998,472 B2 6,2005 Swayre et al. 6,716,233 B1 4,2004 Whirman 6,998,472 B2 6,2005 Swayre et al. 6,723,3091 B2 4,2004 Goble et al. 6,913,608 B2 7,2005 Cylone et al. 6,723,3091 B2 4,2004 Wyers 6,878,608 B2 7,2005 Cylone et al. 6,726,607 B2 4,2004 Wyers 6,878,608 B2 7,2005 Cylone et al. 6,726,607 B2 4,2004 Wyers 6,878,608 B2 7,2005 Cylone et al. 6,736,854 B2 5,2004 Waldrore et al. 6,913,608 B2 7,2005 Cylone et al. 6,736,854 B2 5,2004 Waldrore et al. 6,921,412 B1 7,2005 Edward et al. 6,736,854 B2 6,2004 Waldrore et al. 6,926,716 B2 8,2005 Goble et al. 6,736,854 B2 6,2004 Waldrore et al. 6,926,716 B2 8,2005 Goble et al. 6,736,854 B2 6,2004 Waldrore et al. 6,926,716 B2 8,2005 Goble et al. 6,736,858 B2 6,2004 Waldrore et al. 6,933,318 B1 1,2005 Goble et al. 6,736,858 B2 7,2004 Goble et al. 6,934,818 B1 1,2005 Goble et al. 6,736,858 B2 7,2004 Goble et al. 6,938,818 B1 1,2005 Gob								
6,689,153 B1 2,2004 Number of the Section 1,2005 Number								
6.692.507 B2 2/2004 Pugsley et al. 6.695.198 B2 2/2004 Adams et al. 6.695.198 B2 2/2004 Whirman 6.698.435 B2 3/2005 Eirney et al. 6.698.643 B2 3/2004 Whirman 6.698.435 B2 3/2005 Blake, III 6.698.643 B2 3/2004 Whirman 6.698.643 B2 3/2004 Whirman 6.679.241 B2 3/2005 Sonnenschein et al. 6.698.643 B2 3/2004 Whirman 6.679.241 B2 3/2004 Whirman 6.679.241 B2 3/2004 Myers 6.877.647 B2 4/2005 Green et al. 6.704.503 B1 3/2004 Pedicini et al. 6.704.503 B1 3/2004 Pedicini et al. 6.705.503 B1 3/2004 Pedicini et al. 6.705.503 B1 3/2004 Pedicini et al. 6.705.503 B1 3/2004 Pedicini et al. 6.706.705.503 B1 3/2004 Pedicini et al. 6.706.705.503 B1 4/2004 Viola 6.716.232 B2 4/2004 Leopold et al. 6.706.706.703 B2 4/2004 Viola 6.716.233 B1 4/2004 Viola 6.716.233 B1 4/2004 Viola 6.995.473 B2 6/2005 Swayze et al. 6.716.233 B1 4/2004 Whirman 6.708.474 B2 6/2005 Wiener et al. 6.723.697 B2 4/2004 O'Ncill et al. 6.723.698 B2 4/2004 Fenton, Jr. 6.723.091 B2 4/2004 Goble et al. 6.723.698 B2 4/2004 Viola 6.913.608 B2 7/2005 Liddicoat et al. 6.723.698 B2 4/2004 Whirman 6.726.697 B2 4/2004 Whirman 6.726.697 B2 4/2004 Whirman 6.726.697 B2 4/2004 Whirman 6.726.698 B2 4/2004 Whirman 6.726.698 B1 6/2004 Whirman 6.726.698 B1 6/2004 Whirman 6.726.698 B1 6/2004 Whirman 6.726.698 B1 6/2004 Whirman 6.727.698 B1 6/2004 Whirman 6.728.698 B1 6/2004 Whirman 6.728.698 B1 6/2004 Whirman 6.728.698 B2 7/2005 Corcorne et al. 6.728.728 B2 7/2005 Goble et al. 6.729.748 B2 7/2005 Goble et al. 6.729.748 B2 7/2005 Goble et al. 6.736.748 B2 7/2005 Goble et al. 6.737.749 B2 7/2005 Goble et al. 6.737.749 B2 7/2005 Goble et al. 6.738.749 B2 7/2005 Goble et al. 6.738.749 B2 7/2005 Goble et al. 6.739.758 B2 7/2004 Whirman et al. 6.739.758 B2 7/2005 Goble et al. 6.739.758 B2 7/2004 Whirman et al. 6.739.75								
6,695,198 B2 2/2004 Whitman 6,869,435 B2 3/2005 Blake, III 6,695,497 B2 3/2005 Whitman 6,872,214 B2 3/2005 Sonnenschein et al. 6,690,357 B2 3/2004 Wallace et al. 6,873,669 B2 4/2005 Green et al. 6,703,503 B1 3/2004 Pedicini et al. 6,878,106 B1 4/2005 Green et al. 6,705,503 B1 3/2004 Pedicini et al. 6,878,106 B1 4/2005 Green et al. 6,705,503 B1 3/2004 Viola 6,839,343 B2 5/2005 Globle G7,102,73 B1 3/2004 Viola 6,893,435 B2 5/2005 Globle G7,16,223 B2 4/2004 Viola 6,893,435 B2 5/2005 Globle G7,16,223 B2 4/2004 Viola 6,893,435 B2 5/2005 Globle G7,16,223 B1 4/2004 Viola 6,893,435 B2 5/2005 Globle G7,16,223 B1 4/2004 Viola 6,905,497 B2 6/2005 Swayze et al. 6,716,233 B1 4/2004 Viola 6,905,497 B2 6/2005 Swayze et al. 6,716,233 B1 4/2004 Viola et al. 6,905,497 B2 6/2005 Swayze et al. 6,725,250 B2 4/2004 Fenton, Ir. 6,911,033 B2 6/2005 Globle G7,220,503 B2 4/2004 Globle et al. 6,913,608 B2 7/2005 Illudicont et al. 6,723,087 B2 4/2004 Globle et al. 6,913,608 B2 7/2005 Illudicont et al. 6,723,087 B2 4/2004 Globle et al. 6,913,608 B2 7/2005 Illudicont et al. 6,723,087 B2 4/2004 Schnipbe et al. 6,913,608 B2 7/2005 Schwarze et al. 6,724,607 B2 4/2004 Schnipbe et al. 6,913,608 B2 7/2005 Schwarze et al. 6,736,825 B2 5/2004 Schnipbe et al. 6,921,397 B2 7/2005 Schwarz et al. 6,736,825 B2 5/2004 Schnipbe et al. 6,921,397 B2 7/2005 Schwarz et al. 6,736,825 B2 5/2004 Schnipbe et al. 6,923,803 B2 8/2005 Globle et al. 6,736,825 B2 5/2004 Schnipbe et al. 6,923,803 B2 8/2005 Globle et al. 6,735,816 B2 6/2004 Vaduro et al. 6,923,803 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,810 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,2816 B2 6/2004 Globle et al. 6,932,818 B2 8/2005 Globle et al. 6,755,28					, ,			
6,698, 643 B2 3,2004 Wallance et al. 6,872,1214 B2 3,2005 Sonnenschein et al. 6,699,235 B2 3,2004 Wallance et al. 6,873,169 B2 4,2005 Green et al. 6,704,210 B1 3,2004 Myers 6,878,106 B1 4,2005 Herrmann 6,709,445 B2 3,2004 Wolar 6,888,116 B2 5,2005 Herrmann 6,709,445 B2 3,2004 Vola 6,889,116 B2 5,2005 Globle Green et al. 6,889,116 B2 5,2005 Globle Green et al. 6,889,116 B2 5,2005 Globle Green et al. 6,905,477 B2 6,2005 Globle Green et al. 6,716,723 B1 4,2004 Volal et al. 6,905,477 B2 6,2005 Globle Green et al. 6,716,723 B1 4,2004 Whitman 6,908,472 B2 6,2005 Globle Green et al. 6,716,723 B2 4,2004 Globle et al. 6,913,679 B2 7,2005 Globle Green et al. 6,921,397 B2 7,2005 Globle Green et al. 6,921,397 B2 7,2005 Globle Green et al. 6,921,397 B2 7,2005 Globle Green et al. 6,921,412 B7 7,2005 Globle Green et al. 6,925,404 B2 8,2005 Globle Green et al. 6,925,404 B2 8,20								
6,699_235 E2 3/2004 Wallace et al. 6,874,669 E2 4/2005 Adams et al. 6,704_210 B1 3/2004 Wyers 6,875,676 E2 4/2005 Minamo 6,705,503 B1 3/2004 Pedicini et al. 6,875,674 E2 5,2005 Jinano 6,709_445 E2 5,2005 Jinano 6,709_445 E2 5,2005 Jinano 6,701_2773 B1 3/2004 Viola 6,893_413 E2 5,2005 Jinano 6,701_2773 E3 4/2004 Viola 6,893_413 E2 5,2005 Jinano 6,701_273 E3 4/2004 Viola 6,893_413 E2 5,2005 Jinano 6,701_273 E3 4/2004 Viola 6,905_497 E3 6,2005 Jinano 6,701_273 E3 4/2004 Viola 6,905_497 E3 6,2005 Truckai et al. 6,701_6233 E3 4/2004 Viola 6,701_623 E3 4/2004 Viola 6,913_633 E3 6,702_65 E3 4/2004 Civil 6,901_623 E3 E3 E3 E3 E3 E3 E3								
6.704.200 BJ 3/2004 Myers 6.877.647 B2 4/2005 Green et al. 6.705.503 BJ 3/2004 Velocini et al. 6.878.106 BJ 4/2004 Gobel et al. 6.878.106 BJ 4/2005 Gobel 6.716.223 BJ 4/2004 Leopold et al. 6.889.146 BZ 5/2005 Goble 6.716.223 BJ 4/2004 Velocand Leopold et al. 6.905.057 BZ 6/2005 Goble 6.716.223 BJ 4/2004 Velocand Whitman 6.908.472 BZ 6/2005 Swayze et al. 6.716.223 BJ 4/2004 Whitman 6.908.472 BZ 6/2005 Wiener et al. 6.716.233 BJ 4/2004 Whitman 6.908.472 BZ 6/2005 Wiener et al. 6.716.233 BJ 4/2004 Whitman 6.908.472 BZ 6/2005 Wiener et al. 6.723.087 BZ 4/2004 Fenton. Jr. 6.911.033 BZ 6/2005 Goble 6.723.087 BZ 4/2004 Whitman 6.913.579 BZ 7/2005 Goble 6.723.087 BZ 4/2004 Whitman 6.913.679 BZ 7/2005 Goble 6.723.087 BZ 4/2004 Whitman 6.913.679 BZ 7/2005 Goble 6.723.087 BZ 4/2004 O'Nicholas et al. 6.913.688 BZ 7/2005 Goble 6.723.081 BZ 4/2004 Whitman 6.913.679 BZ 7/2005 Goble 6.726.087 BZ 4/2004 Sicholas et al. 6.913.678 BZ 7/2005 Goble 6.726.087 BZ 4/2004 Whitman 6.921.412 BJ 7/2005 Goble 6.736.825 BZ 5/2004 Water et al. 6.921.397 BZ 7/2005 Goble 6.736.825 BZ 5/2004 Water et al. 6.922.3803 BZ 8/2005 BBack et al. 6.736.848 BZ 5/2004 Water et al. 6.925.716 BZ 8/2005 BBack et al. 6.736.856 BJ 6/2004 Water et al. 6.925.716 BZ 8/2005 Goble 6.749.556 BJ 6/2004 Water et al. 6.932.810 BZ 8/2005 Goble 6.749.556 BJ 6/2004 Water et al. 6.932.810 BZ 8/2005 Goble 6.755.195 BJ 6/2004 Culp et al. 6.932.810 BZ 8/2005 Goble 6.755.195 BJ 6/2004 Culp et al. 6.932.810 BZ 8/2005 Goble 6.755.195 BJ 6/2004 Culp et al. 6.932.810 BZ 8/2005 Goble 6.755.83846 BZ 7/2004 Goble et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Culp et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Culp et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Culp et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Goble et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Goble et al. 6.933.830 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Goble et al. 6.935.831 BZ 8/2005 Goble et al. 6.765.838 BZ 8/2004 Goble et al. 6.935.831 BZ								
6,705,503 BI 3/2004 Pedicini et al. 6,878,106 BI 4/2005 Herrmann 6,709,445 B2 3/2004 Viola 6,883,435 B2 5/2005 Golble 6,716,223 BI 4/2004 Viola 6,905,677 B2 6/2005 Swayze et al. 6,716,223 BI 4/2004 Viola 6,905,677 B2 6/2005 Swayze et al. 6,716,232 BI 4/2004 Viola 6,905,677 B2 6/2005 Swayze et al. 6,716,233 BI 4/2004 Viola 6,905,497 B2 6/2005 Winter et al. 6,721,673 BI 4/2004 Viola 6,721,070 E,721,070 E,721,								
6,709,445 B2 3/2004 Boebel et al. 6,889,116 B2 5/2005 Goble 6,716,232 B2 4/2004 Leopold et al. 6,893,435 B2 5/2005 Goble 6,716,232 B2 4/2004 Vidal et al. 6,905,057 B2 6/2005 Goble 6,716,233 B1 4/2004 Withman 6,908,472 B2 6/2005 Wiener et al. 6,716,233 B1 4/2004 Withman 6,908,472 B2 6/2005 Wiener et al. 6,721,338 B2 4/2004 Fenton, Ir. 6,911,033 B2 6/2005 Wiener et al. 6,723,087 B2 4/2004 O'Neill et al. 6,913,787 B2 7/2005 Truckai et al. 6,723,087 B2 4/2004 Vikiohas et al. 6,913,608 B2 7/2005 Goble 6,723,087 B2 4/2004 O'Neill et al. 6,913,787 B2 7/2005 Truckai et al. 6,723,091 B2 4/2004 O'Neill et al. 6,913,608 B2 7/2005 Goble 6,740,740 B2 4/2004 Vikiohas et al. 6,913,608 B2 7/2005 Goble 6,740,740 B2 4/2004 Vikiohas et al. 6,913,608 B2 7/2005 Goble 6,740,740 B2 4/2004 Vikiohas et al. 6,913,608 B2 7/2005 Goble 6,740,030 B2 5/2004 Sature et al. 6,921,397 B2 7/2005 Goble 6,740,030 B2 5/2004 Batter et al. 6,921,412 B1 7/2005 Black et al. 6,736,854 B2 5/2004 Blatter et al. 6,923,803 B2 8/2005 Goble 6,740,030 B2 5/2004 Waturo et al. 6,926,761 B2 8/2005 Baker et al. 6,741,212 B2 6/2004 Gogolewski 6,299,641 B2 8/2005 Goble et al. 6,741,212 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Goble et al. 6,752,816 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Uajo et al. 6,755,338 B2 6/2004 Burdorff et al. 6,932,218 B2 8/2005 Gresham et al. 6,755,338 B2 6/2004 Emke et al. 6,932,818 B2 8/2005 Gresham et al. 6,936,042 B2 8/2005 Gresham et al. 6,767,355 B2 7/2004 Goble et al. 6,938,338 B1 10/2005 Gresham et al. 6,767,356 B2 7/2004 Goble et al. 6,938,035 B2 10/2005 Gresham et al. 6,769,590 B2 8/2004 Grosh et al. 6,938,035 B2 10/2005 Gresham et al. 6,769,590 B2 8/2004 Grosh et al. 6,938,035 B2 10/2005 Gresham et al. 6,769,590 B2 8/2004 Grosh et al. 6,938,035 B2 10/2005 Gresham et al. 6,773,438 B1 8/2004 Grosh et al. 6,938,035 B2 10/2005 Gresham et al. 6,793,653								
6.712,773 B1 3/2004 Viola								
6,716,223 B1 4/2004 Vidal et al. 6,905,957 B2 6/2005 Swayze et al. 6,716,233 B1 4/2004 Vidal et al. 6,905,497 B2 6/2005 Truckai et al. 6,716,233 B1 4/2004 Whitman 6,908,472 B2 6/2005 Wiener et al. 6,723,097 B2 4/2004 Fenton. Jr. 6,911,033 B2 7/2005 de Guillebon et al. 6,723,097 B2 4/2004 O'Neill et al. 6,913,579 B2 7/2005 Liddicoart et al. 6,723,097 B2 4/2004 Nicholas et al. 6,913,608 B2 7/2005 Liddicoart et al. 6,726,697 B2 4/2004 Nicholas et al. 6,913,613 B2 7/2005 Liddicoart et al. 6,729,119 B2 5/2004 Schnipke et al. 6,921,397 B2 7/2005 Corroran et al. 6,736,854 B2 5/2004 Blatter et al. 6,921,397 B2 7/2005 Black et al. 6,736,854 B2 5/2004 Marton et al. 6,922,803 B2 8/2005 Goble 6,749,506 B1 6/2004 Corroran et al. 6,926,716 B2 8/2005 Baker et al. 6,741,121 B2 6/2004 Marton et al. 6,926,716 B2 8/2005 Baker et al. 6,749,506 B1 6/2004 Konstrumet al. 6,926,716 B2 8/2005 Goble et al. 6,752,768 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Truckai et al. 6,752,816 B2 6/2004 Lemke et al. 6,932,218 B2 8/2005 Truckai et al. 6,755,338 B2 6/2004 Lemke et al. 6,932,218 B2 8/2005 Truckai et al. 6,755,338 B2 6/2004 Lemke et al. 6,932,810 B2 8/2005 Truckai et al. 6,755,338 B2 6/2004 Lemke et al. 6,936,042 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Goble et al. 6,936,042 B2 8/2005 Wallace et al. 6,767,355 B2 7/2004 Goble et al. 6,936,3138 B1 10/2005 Fraidman et al. 6,767,355 B2 7/2004 Fich et al. 6,936,3138 B1 10/2005 Fraidman et al. 6,767,356 B2 7/2004 Fich et al. 6,936,3138 B1 10/2005 Fraidman et al. 6,769,594 B2 8/2004 Urban, III 6,958,3138 B1 10/2005 Fraidman et al. 6,769,594 B2 8/2004 Truckai et al. 6,936,438 B2 11/2005 Shelton, IV et al. 6,783,524 B2 8/2004 Millian et al. 6,960,107 B1 11/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,960,207 B2 11/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Hamilton et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Hamilton et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,885,738 B2 1/			3/2004	Viola				
6,716,233 B1			4/2004	Leopold et al.				
6,722,552 B2								
Company Comp								
6,723,091 B2	6,722,552	: B2						
6,726,697 B2 4/2004 Nicholas et al. 6,913,613 B2 7/2005 Corroran et al. 6,726,1911 B2 5/2004 Schnwarz et al. 6,921,197 B2 7/2005 Corroran et al. 6,736,825 B2 5/2004 Wadurro et al. 6,921,307 B2 7/2005 Black et al. 6,736,854 B2 5/2004 Vadurro et al. 6,923,803 B2 8/2005 Black et al. 6,736,854 B2 5/2004 Wadurro et al. 6,926,716 B2 8/2005 Black et al. 6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Baker et al. 6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Baker et al. 6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Baker et al. 6,752,768 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Tiruckai et al. 6,752,768 B2 6/2004 Eurhee et al. 6,932,218 B2 8/2005 Kosann et al. 6,752,816 B2 6/2004 Lulp et al. 6,932,218 B2 8/2005 Kosann et al. 6,755,338 B2 6/2004 Hahnen et al. 6,932,810 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Hahnen et al. 6,936,642 B2 8/2005 Wallace et al. 6,761,685 B2 7/2004 Gole et al. 6,939,358 B2 9/2005 Palacios et al. 6,767,356 B2 7/2004 Kanner et al. 6,945,444 B2 9/2005 Goble et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Dworak et al. 6,766,959 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Dworak et al. 6,760,959 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Dworak et al. 6,760,959 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,773,438 B1 8/2004 Wresh et al. 6,958,353 B2 11/2005 Milliman et al. 6,773,438 B1 8/2004 Wresh et al. 6,959,851 B2 11/2005 Schaube et al. 6,773,438 B1 8/2004 Goble et al. 6,960,107 B1 11/2005 Schaube et al. 6,786,869 B1 8/2004 Goble et al. 6,960,200 B2 11/2005 Marino et al. 6,786,869 B1 8/2004 Goble et al. 6,960,200 B2 11/2005 Marino et al. 6,786,869 B1 9/2004 Madhani et al. 6,974,962 B2 11/2005 Wallace et al. 6,979,013 B2 9/2004 Madhani et al. 6,974,962 B2 11/2005 Wallace et al. 6,979,013 B2 9/2004 Madhani et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Madhani et al. 6,984,231 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Walters et al. 6,984,231 B2 12/2006 Schwmberger et al. 6,817,508 B2 11/2004 Cooper et al. 6,98								
6,729,119 B2 5/2004 Schnipke et al. 6,921,319 B2 7/2005 Gorcoran et al. 6,736,854 B2 5/2004 Waturro et al. 6,921,412 B1 7/2005 Black et al. 6,736,854 B2 5/2004 Vadurro et al. 6,923,803 B2 8/2005 Goble 6,740,030 B2 5/2004 Martone et al. 6,926,716 B2 8/2005 Goble et al. 6,749,506 B1 6/2004 Goolewski 6,929,644 B2 8/2005 Goble et al. 6,749,506 B1 6/2004 Konstorum et al. 6,929,644 B2 8/2005 Goble et al. 6,752,768 B2 6/2004 Waturoff et al. 6,931,830 B2 8/2005 Liao Goble et al. 6,752,816 B2 6/2004 Lemke et al. 6,931,830 B2 8/2005 Liao Goble et al. 6,753,818 B2 6/2004 Lemke et al. 6,932,218 B2 8/2005 Kosann et al. 6,753,338 B2 6/2004 Hahen et al. 6,936,404 B2 8/2005 Wallace et al. 6,758,846 B2 7/2004 Goble et al. 6,936,404 B2 8/2005 Wallace et al. 6,763,538 B2 6/2004 Hahen et al. 6,936,404 B2 8/2005 Wallace et al. 6,763,538 B2 6/2004 Hahen et al. 6,936,444 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Adams et al. 6,942,666 B2 9/2005 Wallace et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Worak et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,773,409 B2 8/2004 Truckai et al. 6,959,851 B1 11/2005 Milliman et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,163 B2 11/2005 Schaub et al. 6,780,151 B2 8/2004 Madhani et al. 6,960,163 B2 11/2005 Schaub et al. 6,780,151 B2 8/2004 Madhani et al. 6,960,163 B2 11/2005 Schaub et al. 6,786,864 B2 9/2004 Madhani et al. 6,966,970 B2 11/2005 Solvab et al. 6,786,864 B2 9/2004 Madhani et al. 6,971,98 B2 12/2005 Solvab et al. 6,793,652 B1 19/2004 Madhani et al. 6,974,862 B2 11/2005 Solvab et al. 6,793,652 B1 19/2004 Madhani et al. 6,978,921 B2 12/2005 Solvab et al. 6,793,653 B1 19/2004 Madhani et al. 6,984,231 B2 12/2005 Solvab et al. 6,793,653 B2 10/2004 Mathani et al. 6,984,231 B2 12/2005 Solvab et al. 6,980,808 B1 10/2004 Watters et al. 6,984,231 B2 12/2005 Solvab et al. 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 12/2005 Solvab et al. 6,817,508 B2 11/2004 Watters et al. 6,986								
6,736,854 B2 5/2004 Vadurro et al. 6,923,803 B2 8/2005 Goble 6,740,030 B2 5/2004 Martone et al. 6,926,716 B1 8/2005 Goble et al. 6,740,121 B2 6/2004 Gogolewski 6,292,644 B2 8/2005 Goble et al. 6,749,560 B1 6/2004 Guglewski 6,292,644 B2 8/2005 Truckai et al. 6,752,768 B2 6/2004 Culp et al. 6,931,830 B2 8/2005 Liao Goble et al. 6,752,768 B2 6/2004 Culp et al. 6,932,218 B2 8/2005 Liao Golden et al. 6,755,2816 B2 6/2004 Lemke et al. 6,932,218 B2 8/2005 Liao Golden et al. 6,755,195 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Hahnen et al. 6,336,404 B2 8/2005 Wallace et al. 6,758,846 B2 7/2004 Goble et al. 6,934,642 B2 8/2005 Goble et al. 6,761,685 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Field et al. 6,944,444 B2 9/2005 Gresham et al. 6,767,356 B2 7/2004 Vresh et al. 6,953,138 B1 10/2005 Dworak et al. 6,767,356 B2 7/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,769,594 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,770,072 B1 8/2004 Truckai et al. 6,959,831 B2 11/2005 Milliman et al. 6,773,438 B1 8/2004 Truckai et al. 6,959,831 B2 11/2005 Shelton, IV et al. 6,780,180 B1 8/2004 Milkiman et al. 6,960,107 B1 11/2005 Shelton, IV et al. 6,780,180 B1 8/2004 Mathan et al. 6,960,107 B1 11/2005 Goble et al. 6,780,180 B1 8/2004 Mathan et al. 6,960,007 B2 11/2005 Marino et al. 6,780,520 B2 8/2004 Mathan et al. 6,971,988 B2 11/2005 Marino et al. 6,780,638 B1 9/2004 Mathan et al. 6,971,988 B2 11/2005 Marino et al. 6,780,638 B1 9/2004 Mathan et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Mathan et al. 6,974,828 B2 11/2005 Marino et al. 6,793,663 B2 9/2004 Mathan et al. 6,986,436 B2 11/2005 Marino et al. 6,973,663 B2 9/2004 Mathan et al. 6,986,431 B2 11/2005 Marino et al. 6,986,808 B1 10/2004 Waters et al. 6,986,431 B2 11/2005 Marino et al. 6,806,808 B1 10/2004 Waters et al. 6,986,431 B2 11/2006 Mathan et al. 6,886,808 B1 10/2004 Waters et al. 6,986,431 B2 11/2006 Mathan et al. 6,817,509 B2 11/2004 Bowman et al. 6,988								
6,740,030 B2 5/2004 Martone et al. 6,926,716 B2 8/2005 Goble et al. 6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Goble et al. 6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Goble et al. 6,752,768 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Cosann et al. 6,752,816 B2 6/2004 Culp et al. 6,932,810 B2 8/2005 Kosann et al. 6,755,915 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Kosann et al. 6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Kosann et al. 6,758,846 B2 7/2004 Adams et al. 6,934,358 B2 9/2005 Palacios et al. 6,761,685 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Gresham et al. 6,767,335 B2 7/2004 Field et al. 6,953,138 B1 10/2005 Gresham et al. 6,767,356 B2 7/2004 Field et al. 6,953,138 B1 10/2005 Gresham et al. 6,769,590 B2 8/2004 Vresh et al. 6,958,313 B2 10/2005 Friedman et al. 6,769,594 B2 8/2004 Truckai et al. 6,958,313 B2 10/2005 Friedman et al. 6,773,340 B2 8/2004 Truckai et al. 6,959,851 B2 11/2005 Friedman et al. 6,773,438 B1 8/2004 Truckai et al. 6,950,138 B2 11/2005 Schaub et al. 6,773,438 B1 8/2004 Grabover et al. 6,960,163 B2 11/2005 Marino et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,0163 B2 11/2005 Marino et al. 6,783,524 B2 8/2004 Anderson et al. 6,966,907 B2 11/2005 Marino et al. 6,786,864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Marshall et al. 6,793,663 B2 9/2004 Matsuura et al. 6,978,911 B2 12/2005 Marshall et al. 6,793,663 B2 9/2004 Matsuura et al. 6,978,911 B2 12/2005 Marshall et al. 6,793,663 B2 9/2004 Matsuura et al. 6,981,941 B2 12/2005 Marshall et al. 6,793,663 B2 9/2004 Matsuura et al. 6,984,203 B2 12/2005 Goble et al. 6,806,808 B1 10/2004 Wittman et al. 6,984,203 B2 12/2005 Goble et al. 6,806,808 B1 10/2004 Matters et al. 6,988,649 B2 12/2006 Goble et al. 6,								
6,747,121 B2 6/2004 Gogolewski 6,929,641 B2 8/2005 Truckai et al. 6,749,560 B1 6/2004 Culp et al. 6,929,644 B2 8/2005 Liao 6,752,816 B2 6/2004 Culp et al. 6,932,218 B2 8/2005 Kosann et al. 6,755,195 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Kosann et al. 6,755,195 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Kosann et al. 6,758,846 B2 7/2004 Goble et al. 6,933,818 B2 8/2005 Kosann et al. 6,761,685 B2 7/2004 Adams et al. 6,939,358 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Field et al. 6,945,444 B2 9/2005 Gresham et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Gresham et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Gresham et al. 6,769,591 B2 8/2004 Orban, III 6,958,315 B2 10/2005 Friedman et al. 6,773,438 B1 8/2004 Truckai et al. 6,953,815 B2 11/2005 Heinrich 6,773,438 B1 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,773,838 2 8/2004 Grabover et al. 6,960,107 B1 11/2005 Schaub et al. 6,780,150 B2 8/2004 Grabover et al. 6,960,200 B2 11/2005 Schaub et al. 6,780,180 B1 8/2004 Knodel et al. 6,960,007 B2 11/2005 Marino et al. 6,786,382 B1 9/2004 Hoffman 6,966,907 B2 11/2005 Marshall et al. 6,786,382 B1 9/2004 Hoffman 6,966,907 B2 11/2005 Salet et al. 6,793,652 B1 9/2004 Madhani et al. 6,971,988 B2 12/2005 Salet et al. 6,793,653 B2 9/2004 Mathani et al. 6,978,921 B2 12/2005 Salet et al. 6,793,663 B2 9/2004 Mathani et al. 6,984,651 B1 1/2006 Matrino et al. 6,806,808 B1 10/2004 Kneifel et al. 6,984,651 B1 1/2006 Matrino et al. 6,806,808 B1 10/2004 Matterel et al. 6,988,650 B2 1/2006 Schembreger et al. 6,817,508 B2 11/2004 Goice et al. 6,988,650 B2 1/2006 Schembreger et al. 6,817,509 B2 11/2004 Goice et al. 6,988,650 B2 1/2006 Schembreger et al. 6,817,509 B2 11/2004 Gooce et al. 6								
6,749,560 B1 6/2004 Konstorum et al. 6,929,644 B2 8/2005 Liao 6,752,768 B2 6/2004 Burdorff et al. 6,931,830 B2 8/2005 Kosann et al. 6,752,768 B2 6/2004 Lup et al. 6,932,218 B2 8/2005 Kosann et al. 6,755,195 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Kyann et al. 6,755,338 B2 6/2004 Hahnen et al. 6,932,810 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Wallace et al. 6,761,685 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Field et al. 6,943,138 B1 10/2005 Goble et al. 6,767,355 B2 7/2004 Field et al. 6,943,138 B1 10/2005 Dworak et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Dworak et al. 6,769,590 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Friedman et al. 6,770,728 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Heinrich 6,773,409 B2 8/2004 Knodel et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,107 B1 11/2005 Wallace et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Wallace et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Shelton, IV et al. 6,786,864 B2 9/2004 Madhani et al. 6,966,907 B2 11/2005 Goble 6,786,864 B2 9/2004 Madhani et al. 6,974,462 B2 11/2005 Goble 6,793,663 B2 9/2004 Madhani et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Madhani et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Madhani et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,984,231 B2 1/2006 Walter et al. 6,984,231 B2 1/2006 Goble et al. 6,984,231 B2 1/2006 Goble et al. 6,984,231 B2 1/2006 Goble et al. 6,805,273 B2 10/2004 Watters et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Goble et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Goble et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Goble et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Goble et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Goble								
6,752,768 B2 6/2004 Cupt et al. 6,931,830 B2 8/2005 Liao 6,752,816 B2 6/2004 Cupt et al. 6,932,218 B2 8/2005 Rosann et al. 6,755,816 B2 6/2004 Lemke et al. 6,932,810 B2 8/2005 Ryan 6,755,338 B2 6/2004 Hahnen et al. 6,932,810 B2 8/2005 Ryan 6,758,846 B2 7/2004 Goble et al. 6,932,818 B2 9/2005 Palacios et al. 6,758,846 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Goble et al. 6,767,356 B2 7/2004 Field et al. 6,945,444 B2 9/2005 Gresham et al. 6,767,356 B2 7/2004 Field et al. 6,953,138 B1 0/2005 Gresham et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 0/2005 Milliman et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 0/2005 Milliman et al. 6,769,594 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Firiedman et al. 6,773,409 B2 8/2004 Cruckai et al. 6,959,851 B2 11/2005 Firiedman et al. 6,773,438 B1 8/2004 Knodel et al. 6,959,851 B2 11/2005 Schaub et al. 6,773,438 B1 8/2004 Grabover et al. 6,960,107 B1 11/2005 Schaub et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,103 B2 11/2005 Ewers et al. 6,780,180 B1 8/2004 Grabover et al. 6,966,007 B2 11/2005 Marino et al. 6,786,864 B2 9/2004 Madhani et al. 6,966,907 B2 11/2005 Goble et al. 6,786,864 B2 9/2004 Madhani et al. 6,974,988 B2 12/2005 Gresham et al. 6,974,962 B2 11/2005 Schaub et al. 6,978,93,661 B2 9/2004 Madhani et al. 6,974,988 B2 12/2005 Gresham et al. 6,978,921 B2 12/2005 Gresham et al. 6,978,921 B2 12/2005 Gresham et al. 6,988,698 B1 10/2004 Walcs et al. 6,988,649 B2 1/2006 Gresham et al. 6,988,649 B2 1/2006 Granoe Gresham et al. 6,988,649 B2 1/2006 Granoe et al. 6,817,508 B1 11/2004 Gooper et al. 6,988,649 B2 1/2006 Schnipke et al. 6,817								
6,755,195 B1 6/2004 Lemke et al. 6,932,810 B2 8/2005 Ryan 6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Wallace et al. 6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Wallace et al. 6,758,846 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Goble et al. 6,767,355 B2 7/2004 Field et al. 6,945,444 B2 9/2005 Gresham et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Wallace et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Worak et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,139 B2 10/2005 Friedman et al. 6,769,594 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Friedman et al. 6,773,409 B2 8/2004 Truckai et al. 6,959,851 B2 11/2005 Friedman et al. 6,773,438 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,773,438 B1 8/2004 Mickka et al. 6,960,107 B1 11/2005 Shelton, IV et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,163 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,966,907 B2 11/2005 Marino et al. 6,783,524 B2 8/2004 Anderson et al. 6,966,907 B2 11/2005 Marshall et al. 6,786,886 B1 9/2004 Matsuura et al. 6,966,907 B2 11/2005 Marshall et al. 6,786,896 B1 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Sater 6,793,661 B2 9/2004 Matsuura et al. 6,974,462 B2 12/2005 Sater 6,793,661 B2 9/2004 Matsuura et al. 6,978,921 B2 12/2005 Sater 6,793,661 B2 9/2004 Kneifel et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Hamilton et al. 6,981,941 B2 1/2006 Wales et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Marshall et al. 6,805,273 B2 10/2004 Bilotti et al. 6,984,231 B2 1/2006 Goble et al. 6,806,808 B1 10/2004 Matters et al. 6,984,231 B2 1/2006 Goble et al. 6,806,808 B1 10/2004 Bilotti et al. 6,984,231 B2 1/2006 Goble et al. 6,806,808 B1 10/2004 Goble et al. 6,984,231 B2 1/2006 Goble et al. 6,817,509 B2 11/2004 Goole et al. 6,988,650 B2 1/2006 Schwmberger et al. 6,817,974 B2 11/2004 Gooper et al. 6,990,796 B2 1/2006 Schmibreger et al. 6,817,974 B2 11/2004 Cooper et al. 6,								
6,755,338 B2 6/2004 Hahnen et al. 6,936,042 B2 8/2005 Wallace et al. 6,758,846 B2 7/2004 Goble et al. 6,939,358 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Adams et al. 6,942,662 B2 9/2005 Goble et al. 6,767,352 B2 7/2004 Field et al. 6,945,444 B2 9/2005 Goble et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Milliman et al. 6,766,590 B2 8/2004 Vresh et al. 6,953,138 B2 10/2005 Milliman et al. 6,769,590 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Milliman et al. 6,769,590 B2 8/2004 Truckai et al. 6,953,139 B2 10/2005 Shelton, IV et al. 6,773,409 B2 8/2004 Truckai et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,163 B2 11/2005 Shelton, IV et al. 6,773,438 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Shelton, IV et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,783,524 B2 8/2004 Anderson et al. 6,966,909 B2 11/2005 Marino et al. 6,786,864 B2 9/2004 Mathani et al. 6,966,909 B2 11/2005 Marshall et al. 6,786,866 B1 9/2004 Mathani et al. 6,971,988 B2 12/2005 Orban, III 6,786,866 B1 9/2004 Mathani et al. 6,971,988 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Mathani et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Mathani et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Hamilton et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Mathani et al. 6,981,978 B2 1/2006 Waltes al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Goble et al. 6,984,231 B2 1/2006 Goble et al. 6,984,363 B2 1/2006 Goble et al. 6,984,363 B2 1/2006 Goble et al. 6,984,363 B2 1/2006 Goble et al. 6,981,978 B2 1/2006 Goble et al. 6,984,649 B2 1/2006 Goble et al. 6,981,797 B2 1/2006 Goble et al. 6,988,649 B2 1/2006 Schwemberger et al. 6,981,797 B2 1/2004 Cooper et al. 6,988,649 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,988,649 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,986,649 B2 1/2006 Sch			6/2004	Culp et al.				
6,758,846 B2 7/2004 Goble et al. 6,939,358 B2 9/2005 Palacios et al. 6,761,685 B2 7/2004 Goble et al. 6,945,444 B2 9/2005 Goble et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Dworak et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Friedman et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Friedman et al. 6,769,590 B2 8/2004 Urackai et al. 6,958,035 B2 10/2005 Friedman et al. 6,770,072 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Friedman et al. 6,773,409 B2 8/2004 Miekka et al. 6,959,852 B2 11/2005 Schaub et al. 6,773,438 B1 8/2004 Miekka et al. 6,960,107 B1 11/2005 Schaub et al. 6,778,151 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Schaub et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,163 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Mackan et al. 6,960,220 B2 11/2005 Marino et al. 6,786,382 B1 9/2004 Mackan et al. 6,966,907 B2 11/2005 Marino et al. 6,786,864 B2 9/2004 Mackan et al. 6,966,907 B2 11/2005 Marshall et al. 6,786,866 B1 9/2004 Mackan et al. 6,971,198 B2 12/2005 Marshall et al. 6,790,173 B2 9/2004 Mackan et al. 6,972,199 B2 12/2005 Scheton, IV et al. 6,793,661 B2 9/2004 Mackan et al. 6,972,199 B2 12/2005 Scheton, IV et al. 6,793,663 B2 10/2004 Mackan et al. 6,978,921 B2 12/2005 Scheton, IV et al. 6,793,663 B2 9/2004 Marino et al. 6,978,921 B2 12/2005 Scheton, IV et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Mackan et al. 6,988,253 B2 10/2006 Truckai et al. 6,988,253 B2 10/2004 Matter et al. 6,984,231 B2 1/2006 Mackan et al. 6,988,650 B2 1/2006 Goble et al. 6,805,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Mackan et al. 6,805,808 B1 11/2004 Goble et al. 6,988,649 B2 1/2006 Goble et al. 6,817,508 B2 11/2004 Goble et al. 6,988,649 B2 1/2006 Goble et al. 6,817,509 B2 11/2004 Goble et al. 6,988,649 B2 1/2006 Schemeberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schemeberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schemeberger et al.								
6,761,685 B2 7/2004 Adams et al. 6,767,352 B2 7/2004 Field et al. 6,767,352 B2 7/2004 Field et al. 6,767,356 B2 7/2004 Kanner et al. 6,769,590 B2 8/2004 Vresh et al. 6,769,590 B2 8/2004 Vresh et al. 6,769,590 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Friedman et al. 6,770,072 B1 8/2004 Truckai et al. 6,773,409 B2 8/2004 Truckai et al. 6,773,409 B2 8/2004 Knodel et al. 6,773,438 B1 8/2004 Knodel et al. 6,773,438 B2 8/2004 Miekka et al. 6,777,838 B2 8/2004 Grabover et al. 6,780,151 B2 8/2004 Grabover et al. 6,780,180 B1 8/2004 Grobe et al. 6,780,382 B1 9/2004 Matsura et al. 6,786,382 B1 9/2004 Matsura et al. 6,786,896 B1 9/2004 Madhani et al. 6,786,896 B1 9/2004 Madhani et al. 6,793,663 B2 9/2004 Hamilton et al. 6,793,663 B2 9/2004 Hamilton et al. 6,793,663 B2 9/2004 Hamilton et al. 6,793,663 B2 9/2004 Kneifel et al. 6,793,663 B2 9/2004 Mamilton et al. 6,793,663 B2 9/2004 Mamilton et al. 6,805,273 B2 10/2004 Latterell et al. 6,805,873 B2 11/2006 Gannoe 6,805,883 B1 10/2004 Watters et al. 6,805,805 B1 11/2004 Cooper et al. 6,817,509 B2 11/2004 Gooper et al. 6,817,509 B2 11/2004 Cooper et al. 6,817,509 B2 11/2004 Gooper et					6,930,04	2 B2 8 B2		
6,767,352 B2 7/2004 Field et al. 6,945,444 B2 9/2005 Gresham et al. 6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Dworak et al. 6,769,590 B2 8/2004 Vresh et al. 6,953,138 B1 10/2005 Milliman et al. 6,769,594 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Friedman et al. 6,770,072 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Heinrich 6,773,409 B2 8/2004 Truckai et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,773,409 B2 8/2004 Knodel et al. 6,950,107 B1 11/2005 Schaub et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,770,838 B2 8/2004 Grabover et al. 6,960,163 B2 11/2005 Marino et al. 6,780,151 B2 8/2004 Grabover et al. 6,964,363 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Anderson et al. 6,964,363 B2 11/2005 Marino et al. 6,786,382 B1 9/2004 Hoffman 6,966,907 B2 11/2005 Marshall et al. 6,786,382 B1 9/2004 Mathani et al. 6,971,988 B2 12/2005 Goble 6,786,896 B1 9/2004 Mathani et al. 6,971,988 B2 12/2005 Lebouitz et al. 6,790,173 B2 9/2004 Mathani et al. 6,974,462 B2 12/2005 Lebouitz et al. 6,793,661 B2 9/2004 Mathani et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Mathani et al. 6,981,941 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,817,508 B1 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Gooper et al. 6,990,796 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al.					6.942.66	2 B2		
6,767,356 B2 7/2004 Kanner et al. 6,953,138 B1 10/2005 Dworak et al. 6,769,590 B2 8/2004 Vresh et al. 6,958,035 B2 10/2005 Friedman et al. 6,769,594 B2 8/2004 Truckai et al. 6,958,035 B2 10/2005 Friedman et al. 6,770,072 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,773,409 B2 8/2004 Truckai et al. 6,959,852 B2 11/2005 Shelton, IV et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,163 B2 11/2005 Schaub et al. 6,773,438 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Schaub et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Ewers et al. 6,780,180 B1 8/2004 Goble et al. 6,964,363 B2 11/2005 Wales et al. 6,780,382 B1 9/2004 Hoffman 6,966,909 B2 11/2005 Marshall et al. 6,786,382 B1 9/2004 Matsuura et al. 6,966,909 B2 11/2005 Marshall et al. 6,786,864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Marshall et al. 6,786,896 B1 9/2004 Madhani et al. 6,971,988 B2 12/2005 Sater 6,793,661 B2 9/2004 Whitman et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,973,661 B2 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,973,661 B2 9/2004 Kneifel et al. 6,978,922 B2 12/2006 Wales 6,802,843 B2 10/2004 Walters et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Racenet et al. 6,988,645 B2 1/2006 Scheton, IV et al. 6,817,508 B1 11/2004 Goise et al. 6,988,645 B2 1/2006 Scheton, IV et al. 6,817,508 B1 11/2004 Goise et al. 6,988,645 B2 1/2006 Scheton, IV et al. 6,817,509 B2 11/2004 Goise et al. 6,988,645 B2 1/2006 Scheton, IV et al. 6,817,509 B2 11/2004 Gooper et al. 6,988,650 B2 1/2006 Scheton, IV et al. 6,817,509 B2 11/2004 Gooper et al. 6,988,650 B2 1/2006 Schemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schemberger et al. 6,817,509 B2 11/2004 Goise et al. 6,988,650 B2 1/2006 Schemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schemberger et al.							9/2005	Gresham et al.
6,769,590 B2 8/2004 Vresh et al. 6,769,594 B2 8/2004 Orban, III 6,958,035 B2 10/2005 Friedman et al. 6,770,072 B1 8/2004 Truckai et al. 6,773,409 B2 8/2004 Truckai et al. 6,773,438 B1 8/2004 Truckai et al. 6,773,438 B1 8/2004 Knodel et al. 6,773,438 B1 8/2004 Miekka et al. 6,778,338 B2 8/2004 Miekka et al. 6,780,151 B2 8/2004 Grabover et al. 6,780,180 B1 8/2004 Goble et al. 6,780,180 B1 8/2004 Hoffman 6,966,220 B2 11/2005 Wales et al. 6,783,524 B2 8/2004 Matsuura et al. 6,786,382 B1 9/2004 Matsuura et al. 6,786,866 B1 9/2004 Madhani et al. 6,786,896 B1 9/2004 Madhani et al. 6,790,173 B2 9/2004 Whitman et al. 6,793,652 B1 9/2004 Whitman et al. 6,793,663 B2 9/2004 Whitman et al. 6,793,663 B2 9/2004 Kneifel et al. 6,793,663 B2 10/2004 Truckai et al. 6,802,843 B2 10/2004 Watters et al. 6,805,273 B2 10/2004 Watters et al. 6,808,808 B1 10/2004 Watters et al. 6,817,508 B1 11/2004 Racenet et al. 6,817,508 B2 11/2004 Cooper et al. 6,817,509 B2 11/2004 Cooper et al. 6,809,794 B2 11/2006 Schelton, IV et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schelton, IV et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schelton, IV et al. 6,817,9074 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schelton, IV et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schelton, IV et al.								
6,770,072 B1 8/2004 Truckai et al. 6,959,851 B2 11/2005 Shelton, IV et al. 6,773,409 B2 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,777,838 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Schaub et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,966,220 B2 11/2005 Marino et al. 6,783,524 B2 8/2004 Anderson et al. 6,966,907 B2 11/2005 Goble 6,786,382 B1 9/2004 Hoffman 6,971,988 B2 12/2005 Marshall et al. 6,786,6864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Whitman et al. 6,978,922 B2 12/2005 Shelton, IV et al. 6,802,843 B2 10/2004 Truckai et al. 6,981,543 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,988,6451 B1 1/2006 Matsriet al. 6,817,508 B1 11/2004 Geiste et al. 6,988,649 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Gooper et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwemberger et al.			8/2004	Vresh et al.				
6,773,409 B2 8/2004 Truckai et al. 6,959,852 B2 11/2005 Schaub et al. 6,773,438 B1 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,773,438 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Ewers et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Anderson et al. 6,966,907 B2 11/2005 Goble 6,783,524 B2 8/2004 Hoffman 6,966,907 B2 11/2005 Goble 6,786,382 B1 9/2004 Hoffman 6,966,909 B2 11/2005 Marshall et al. 6,786,864 B2 9/2004 Matsuura et al. 6,971,198 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,661 B2 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Shelton, IV et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Wales 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al. 6,817,507 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al.								
6,773,438 B1 8/2004 Knodel et al. 6,960,107 B1 11/2005 Schaub et al. 6,773,438 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Ewers et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,966,907 B2 11/2005 Goble 6,786,382 B1 9/2004 Hoffman 6,966,909 B2 11/2005 Goble 6,786,382 B1 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,864 B2 9/2004 Mathani et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Mathani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,663 B2 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Hamilton et al. 6,981,628 B2 1/2006 Wales 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al.								
6,777,838 B2 8/2004 Miekka et al. 6,960,163 B2 11/2005 Ewers et al. 6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,964,363 B2 11/2005 Wales et al. 6,783,524 B2 8/2004 Hoffman 6,966,907 B2 11/2005 Goble 6,786,382 B1 9/2004 Hoffman 6,966,909 B2 11/2005 Marshall et al. 6,786,864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,663 B2 9/2004 Whitman et al. 6,978,921 B2 12/2005 Sater 6,793,663 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Bilotti et al. 6,973,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B1 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schwimberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al.								
6,780,151 B2 8/2004 Grabover et al. 6,960,220 B2 11/2005 Marino et al. 6,780,180 B1 8/2004 Goble et al. 6,964,363 B2 11/2005 Wales et al. 6,786,382 B1 9/2004 Hoffman 6,966,907 B2 11/2005 Marshall et al. 6,786,864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,661 B2 9/2004 Hamilton et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Gannoe 6,806,808 B1 11/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,817,508 B1 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,509 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schwemberger et al.								
6,783,524 B2 8/2004 Anderson et al. 6,966,909 B2 11/2005 Marshall et al. 6,786,8864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Orban, III 6,790,173 B2 9/2004 Madhani et al. 6,974,462 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Hamilton et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Geiste et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,974 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,974 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.								
6,786,382 B1 9/2004 Hoffman 6,966,909 B2 11/2005 Orban, III 6,786,864 B2 9/2004 Matsuura et al. 6,971,1988 B2 12/2005 Crban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Lebouitz et al. 6,970,173 B2 9/2004 Saadat et al. 6,974,462 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Bilotti et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,974 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.								
6,786,864 B2 9/2004 Matsuura et al. 6,971,988 B2 12/2005 Orban, III 6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,661 B2 9/2004 Hamilton et al. 6,978,921 B2 12/2005 Bilotti et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 12/2005 Bilotti et al. 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,987,974 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,987,974 B2 11/2004 Goiste et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,987,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwemberger et al.								
6,786,896 B1 9/2004 Madhani et al. 6,972,199 B2 12/2005 Sater 6,790,173 B2 9/2004 Whitman et al. 6,974,462 B2 12/2005 Sater 6,793,662 B1 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Bilotti et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,941 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,806,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,984,615 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schein, IV et al. 6,817,974 B2 11/2004 Cooper et al. 6,988,650 B2 1/2006 Schnipke et al.								
6,790,173 B2 9/2004 Saadat et al. 6,974,462 B2 12/2005 Sater 6,793,652 B1 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,663 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Bilotti et al. 6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Gannoe 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,650 B2 1/2006 Shelton, IV et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,988,650 B2 1/2006 Schwemberger et al.								
6,793,652 B1 9/2004 Whitman et al. 6,978,921 B2 12/2005 Shelton, IV et al. 6,793,661 B2 9/2004 Hamilton et al. 6,978,922 B2 12/2005 Bilotti et al. 6,993,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Tartaglia et al. 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schwimberger et al.								
6,793,663 B2 9/2004 Kneifel et al. 6,981,628 B2 1/2006 Wales 6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Whitman et al. 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Tartaglia et al. 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.	6,793,652	B1	9/2004	Whitman et al.				
6,802,843 B2 10/2004 Truckai et al. 6,981,941 B2 1/2006 Gannoe 6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Tartaglia et al. 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.	, ,							
6,805,273 B2 10/2004 Bilotti et al. 6,981,978 B2 1/2006 Gannoe 6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Tartaglia et al. 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.	6,793,663	B2						
6,806,808 B1 10/2004 Watters et al. 6,984,203 B2 1/2006 Goble et al. 6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.								
6,808,525 B2 10/2004 Latterell et al. 6,984,231 B2 1/2006 Goble et al. 6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.								
6,814,741 B2 11/2004 Bowman et al. 6,986,451 B1 1/2006 Mastri et al. 6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.								
6,817,508 B1 11/2004 Racenet et al. 6,988,649 B2 1/2006 Shelton, IV et al. 6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.	6,814,741	B2						
6,817,509 B2 11/2004 Geiste et al. 6,988,650 B2 1/2006 Schwemberger et al. 6,817,974 B2 11/2004 Cooper et al. 6,990,796 B2 1/2006 Schnipke et al.	6,817,508	B1						
	6,817,509	B2	11/2004	Geiste et al.				
6,818,018 B1 11/2004 Sawhney 6,994,708 B2 2/2006 Manzo								
	6,818,018	3 B1	11/2004	Sawhney	6,994,70	8 B2	2/2006	Manzo

(56)	Referen	ces Cited	7,128,254			Shelton, IV et al.
U	J.S. PATENT	DOCUMENTS	7,128,748 7,131,445	B2	11/2006	
			7,133,601			Phillips et al. Schwemberger et al.
6,995,729 B		Govari et al. Sauer et al.	7,134,587 7,137,981		11/2006 11/2006	
6,997,931 B 7,000,818 B		Shelton, IV et al.	7,140,527			Ehrenfels et al.
7,000,819 B		Swayze et al.	7,140,528		11/2006	Shelton, IV
7,001,380 B			7,143,923		12/2006 12/2006	Shelton, IV et al.
7,001,408 B		Knodel et al.	7,143,924 7,143,925		12/2006	Scirica et al. Shelton, IV et al.
7,008,435 B 7,011,657 B		Cummins Truckai et al.	7,143,926		12/2006	Shelton, IV et al.
7,018,357 B		Emmons	7,147,138		12/2006	Shelton, IV
7,018,390 B		Turovskiy et al.	7,147,139 7,147,140			Schwemberger et al. Wukusick et al.
7,025,743 B 7,029,435 B		Mann et al.	7,147,140		12/2006 12/2006	
7,029,433 B 7,032,798 B		Whitman et al.	7,147,650		12/2006	
7,032,799 B		Viola et al.	7,150,748			Ebbutt et al.
7,033,356 B		Latterell et al.	7,153,300 7,156,863		12/2006 1/2007	
7,036,680 B 7,037,344 B		Flannery Kagan et al.	7,159,750			Racenet et al.
7,037,344 B 7,041,102 B		Truckai et al.	7,160,299		1/2007	
7,041,868 B		Greene et al.	7,161,036			Oikawa et al.
7,043,852 B		Hayashida et al.	7,168,604 7,172,104		1/2007	Milliman et al. Scirica et al.
7,044,352 B 7,044,353 B		Shelton, IV et al. Mastri et al.	7,172,104			
7,048,687 B		Reuss et al.	7,179,267	B2	2/2007	Nolan et al.
7,048,745 B		Tierney et al.	7,182,239		2/2007	
7,052,494 B		Goble et al.	7,182,763 7,183,737			Nardella Kitagawa
7,055,730 B 7,055,731 B		Ehrenfels et al. Shelton, IV et al.	7,188,758			Viola et al.
7,056,284 B		Martone et al.	7,189,207	B2	3/2007	
7,056,330 B	32 6/2006	Gayton	7,195,627			Amoah et al.
7,059,331 B		Adams et al.	7,199,537 7,204,835			Okamura et al. Latterell et al.
7,059,508 B 7,063,712 B		Shelton, IV et al. Vargas et al.	7,207,233		4/2007	
7,066,879 B		Fowler et al.	7,207,471			Heinrich et al.
7,066,944 B		Laufer et al.	7,207,472 7,207,556		4/2007 4/2007	Wukusick et al. Saitoh et al.
7,067,038 B 7,070,083 B		Trokhan et al. Jankowski	7,207,330			Frecker et al.
7,070,559 B		Adams et al.	7,210,609	B2		Leiboff et al.
7,070,597 B	32 7/2006	Truckai et al.	7,211,081		5/2007	
7,071,287 B		Rhine et al.	7,211,084 7,213,736			Goble et al. Wales et al.
7,075,770 B 7,077,856 B		Whitman	7,214,224		5/2007	
7,080,769 B		Vresh et al.	7,217,285			Vargas et al.
7,081,114 B		Rashidi	7,220,260 7,220,272		5/2007 5/2007	Fleming et al. Weadock
7,083,073 B 7,083,075 B		Yoshie et al. Swayze et al.	7,225,963		6/2007	Scirica
7,083,571 B		Wang et al.	7,225,964		6/2007	Mastri et al.
7,083,615 B	32 8/2006	Peterson et al.	7,234,624			Gresham et al.
7,083,619 B		Truckai et al.	7,235,089 7,235,302		6/2007 6/2007	McGuckin, Jr. Jing et al.
7,083,620 B 7,087,054 B		Jahns et al. Truckai et al.	7,237,708			Guy et al.
7,087,071 B		Nicholas et al.	7,238,195		7/2007	
7,090,637 B		Danitz et al.	7,241,288 7,246,734		7/2007 7/2007	Shelton, IV
7,090,673 B 7,090,683 B		Dycus et al. Brock et al.	7,247,161			Johnston et al.
7,090,684 B		McGuckin, Jr. et al.	7,252,660	B2	8/2007	Kunz
7,094,202 B	8/2006	Nobis et al.	7,255,696			Goble et al.
7,094,247 B		Monassevitch et al.	7,256,695 7,258,262			Hamel et al. Mastri et al.
7,097,089 B 7,097,644 B		Marczyk Long	7,258,546			Beier et al.
7,097,650 B		Weller et al.	7,260,431			Libbus et al.
7,098,794 B		Lindsay et al.	7,265,374 7,267,679			Lee et al. McGuckin, Jr. et al.
7,104,741 B 7,108,695 B		Krohn Witt et al.	7,267,679			Wiener et al.
7,108,793 B		Evens et al.	7,278,562			Mastri et al.
7,108,709 B	9/2006	Cummins	7,278,563		10/2007	
7,111,769 B		Wales et al.	7,278,949		10/2007	
7,112,214 B RE39,358 E		Peterson et al.	7,278,994 7,282,048		10/2007	Goble et al.
7,114,642 B		Whitman	7,282,048			Ehrenfels et al.
7,118,582 B	31 10/2006	Wang et al.	7,295,907	B2	11/2007	Lu et al.
7,121,446 B	32 10/2006	Arad et al.	7,296,722		11/2007	
7,122,028 B	32 10/2006	Looper et al.	7,296,724			Green et al.
7,125,409 B 7,126,303 B		Truckai et al. Farritor et al.	7,297,149 7,300,450			Vitali et al. Vleugels et al.
7,128,253 B		Mastri et al.	7,303,106			Milliman et al.
, ==,=== =			, , , -			

(56)		Referen	ces Cited	7,441,685			Boudreaux
	II S	PATENT	DOCUMENTS	7,442,201 7,448,525			Pugsley et al. Shelton, IV et al.
	0.5.	171111111	DOCCIMENTS	7,451,904			Shelton, IV
-	7,303,107 B2	12/2007	Milliman et al.	7,455,208			Wales et al.
	7,303,108 B2	12/2007		7,455,676			Holsten et al.
	7,303,502 B2		Thompson	7,455,682 7,461,767		11/2008	Viola et al.
	7,303,556 B2 7,308,998 B2		Metzger Mastri et al.	7,462,187			Johnston et al.
	7,322,975 B2		Goble et al.	7,464,846		12/2008	Shelton, IV et al.
	7,322,994 B2		Nicholas et al.	7,464,847			Viola et al.
	7,324,572 B2	1/2008	Chang	7,464,849 7,467,740			Shelton, IV et al. Shelton, IV et al.
	7,326,203 B2		Papineau et al. Benderev et al.	7,467,740			Silverbrook et al.
	7,326,213 B2 7,328,828 B2		Ortiz et al.	7,472,814			Mastri et al.
	7,328,829 B2		Arad et al.	7,472,815		1/2009	
7	7,330,004 B2		DeJonge et al.	7,472,816			Holsten et al.
	7,331,340 B2		Barney	7,473,253 7,473,263		1/2009	Dycus et al. Johnston et al.
	7,334,717 B2 7,334,718 B2		Rethy et al. McAlister et al.	7,479,608		1/2009	
	7,335,199 B2		Goble et al.	7,481,347		1/2009	
	7,336,048 B2	2/2008		7,481,348			Marczyk
	7,336,184 B2		Smith et al.	7,481,349 7,481,824		1/2009	Holsten et al. Boudreaux et al.
	7,338,513 B2		Lee et al.	7,481,624			Cannon et al.
	7,341,591 B2 7,343,920 B2		Grinberg Toby et al.	7,485,142		2/2009	
	7,344,532 B2		Goble et al.	7,487,899	B2	2/2009	
7	7,348,763 B1		Reinhart et al.	7,490,749		2/2009	
	RE40,237 E		Bilotti et al.	7,494,039 7,494,499			Racenet et al. Nagase et al.
	7,351,258 B2		Ricotta et al.	7,494,499			Hueil et al.
	7,354,447 B2 7,354,502 B2		Shelton, IV et al. Polat et al.	7,501,198			Barlev et al.
	7,357,287 B2		Shelton, IV et al.	7,503,474			Hillstead et al.
	7,357,806 B2	4/2008	Rivera et al.	7,506,790		3/2009	,
	7,361,195 B2		Schwartz et al.	7,506,791 7,507,202		3/2009 3/2009	
	7,364,060 B2 7,364,061 B2		Milliman Swayze et al.	7,510,107			Timm et al.
	7,377,918 B2		Amoah	7,510,566			Jacobs et al.
	7,377,928 B2		Zubik et al.	7,513,408		4/2009	
	7,380,695 B2		Doll et al.	7,517,356			Heinrich Tierney et al.
	7,380,696 B2		Shelton, IV et al.	7,524,320 7,530,984		4/2009 5/2009	Sonnenschein et al.
	7,386,730 B2 7,388,217 B2		Uchikubo Buschbeck et al.	7,530,985		5/2009	Takemoto et al.
	7,391,173 B2		Schena	7,546,939			Adams et al.
7	7,396,356 B2		Mollenauer	7,546,940			Milliman et al.
	7,397,364 B2	7/2008		7,547,312 7,549,563			Bauman et al. Mather et al.
	7,398,907 B2 7,398,908 B2		Racenet et al. Holsten et al.	7,549,564			Boudreaux
	7,401,721 B2		Holsten et al.	7,549,998		6/2009	
7	7,404,508 B2		Smith et al.	7,552,854			Wixey et al.
	7,404,509 B2		Ortiz et al.	7,556,185 7,556,186		7/2009	Viola Milliman
	7,404,822 B2 7,407,074 B2		Viart et al. Ortiz et al.	7,556,647			Drews et al.
	7,407,074 B2 7,407,075 B2		Holsten et al.	7,559,449		7/2009	
	7,407,076 B2		Racenet et al.	7,559,450			Wales et al.
	7,407,077 B2		Ortiz et al.	7,559,452 7,563,862		7/2009 7/2009	Wales et al.
	7,407,078 B2		Shelton, IV et al.	7,565,993		7/2009	Sieg et al. Milliman et al.
	7,410,086 B2 7,413,563 B2		Ortiz et al. Corcoran et al.	7,566,300			Devierre et al.
	7,416,101 B2		Shelton, IV et al.	7,567,045			Fristedt
	7,418,078 B2	8/2008	Blanz et al.	7,568,603		8/2009	Shelton, IV et al.
	RE40,514 E		Mastri et al	7,568,604 7,568,619		8/2009 8/2009	
	7,419,080 B2 7,419,081 B2		Smith et al. Ehrenfels et al.	7,575,144		8/2009	
	7,419,081 B2 7,419,495 B2		Menn et al.	7,588,174	B2		Holsten et al.
	7,422,136 B1		Marczyk	7,588,175		9/2009	
	7,422,139 B2		Shelton, IV et al.	7,588,176 7,588,177			Timm et al.
	7,424,965 B2		Racenet et al.	7,588,177			Racenet Boulais et al.
	7,427,607 B2 7,431,188 B1		Suzuki Marczyk	7,597,229			Boudreaux et al.
	7,431,188 B1 7,431,189 B2		Shelton, IV et al.	7,597,230			Racenet et al.
7	7,431,694 B2	10/2008	Stefanchik et al.	7,600,663		10/2009	
	7,431,730 B2	10/2008		7,604,150			Boudreaux
	7,434,715 B2		Shelton, IV et al.	7,604,151			Hess et al.
	7,434,717 B2 7,438,209 B1		Shelton, IV et al. Hess et al.	7,607,557 7,611,038		10/2009 11/2009	Shelton, IV et al. Racenet et al.
	7,438,718 B2		Milliman et al.	7,611,038		11/2009	Hibner et al.
	7,439,354 B2		Lenges et al.	7,615,003		11/2009	Stefanchik et al.
7	7,441,684 B2	10/2008	Shelton, IV et al.	7,615,067	B2	11/2009	Lee et al.

(56)	Ref	eren	ces Cited	7,740,159			Shelton, IV et al.
, ,				7,743,960			Whitman et al.
	U.S. PATI	ENT	DOCUMENTS	7,744,624			Bettuchi
	D0 40(0			7,744,627 7,744,628		6/2010	Orban, III et al.
7,624,902			Marczyk et al.	7,744,028			Haramiishi et al.
7,624,903 7,625,370		2009	Green et al. Hart et al.	7,749,204			Dhanaraj et al.
7,623,370			Rethy et al.	7,751,870			Whitman
7,631,794			Rethy et al.	7,753,245			Boudreaux et al.
7,635,074			Olson et al.	7,753,904		7/2010	Shelton, IV et al.
7,637,409			Marczyk	7,758,612		7/2010	
7,638,958			Philipp et al.	7,766,209 7,766,210			Baxter, III et al. Shelton, IV et al.
7,641,091			Olson et al.	7,766,821			Brunnen et al.
7,641,092 7,641,093			Kruszynski et al. Doll et al.	7,766,894			Weitzner et al.
7,641,095			Viola	7,770,773			Whitman et al.
7,644,783			Roberts et al.	7,770,774			Mastri et al.
7,644,848	B2 1/2	2010	Swayze et al.	7,770,775			Shelton, IV et al.
7,645,230			Mikkaichi et al.	7,770,776			Chen et al. Stefanchik et al.
7,648,519			Lee et al.	7,771,396 7,772,720			McGee et al.
7,651,017 7,651,498			Ortiz et al. Shifrin et al.	7,776,060			Mooradian et al.
7,654,431			Hueil et al.	7,778,004			Nerheim et al.
7,656,131			Embrey et al.	7,780,054		8/2010	
7,658,311			Boudreaux	7,780,055			Scirica et al.
7,658,312	B2 2/2	2010	Vidal et al.	7,780,663			Yates et al.
7,662,161			Briganti et al.	7,780,685 7,784,662			Hunt et al. Wales et al.
7,665,646			Prommersberger	7,784,663			Shelton, IV
7,665,647 7,669,746			Shelton, IV et al. Shelton, IV	7,789,875			Brock et al.
7,669,747			Weisenburgh, II et al.	7,789,883		9/2010	Takashino et al.
7,670,334			Hueil et al.	7,789,889			Zubik et al.
7,673,780		2010	Shelton, IV et al.	7,793,812			Moore et al 227/176.1
7,673,781			Swayze et al.	7,794,475			Hess et al.
7,673,782			Hess et al.	7,798,386 7,799,039			Schall et al. Shelton, IV et al.
7,673,783			Morgan et al.	7,799,033		9/2010	Johnston et al.
7,674,253 7,674,255			Fisher et al. Braun	7,803,151			Whitman
7,674,263			Ryan	7,806,891	B2		Nowlin et al.
7,682,307			Danitz et al.	7,810,690			Bilotti et al.
7,686,201	B2 3/2	2010	Csiky	7,810,691			Boyden et al.
7,686,826	B2 3/2		Lee et al.	7,810,692 7,810,693			Hall et al. Broehl et al.
7,688,028			Phillips et al.	7,810,093			Whitman et al.
7,691,098 7,694,865			Wallace et al. Scirica	7,815,565			Stefanchik et al.
7,695,485			Whitman et al.	7,819,296			Hueil et al.
7,699,204			Viola	7,819,297			Doll et al.
7,699,835		2010	Lee et al.	7,819,298		10/2010	Hall et al.
7,699,844			Utley et al.	7,819,299 7,819,886			Shelton, IV et al. Whitfield et al.
7,699,846	B2 4/2	2010	Ryan	7,813,880			Bettuchi et al.
7,699,856 7,699,859			Van Wyk et al. Bombard et al.	7,824,401			Manzo et al.
7,699,860			Huitema et al.	7,824,426			Racenet et al.
7,703,653			Shah et al.	7,828,189			Holsten et al.
7,708,180			Murray et al.	7,828,794	B2	11/2010	
7,708,181			Cole et al.	7,828,808 7,832,408		11/2010	Hinman et al. Shelton, IV et al.
7,708,758			Lee et al.	7,832,408			Boyden et al.
7,714,239 7,717,312			Smith Beetel	7,832,612			Baxter, III et al.
7,717,312			Criscuolo et al.	7,833,234			Bailly et al.
7,717,846			Zirps et al.	7,836,400			May et al.
7,718,180			Karp	7,837,079			Holsten et al.
7,718,556			Matsuda et al.	7,837,080 7,837,081			Schwemberger Holsten et al.
7,721,930			McKenna et al.	7,837,681			Tethrake et al.
7,721,931 7,721,933			Shelton, IV et al. Ehrenfels et al.	7,842,025			Coleman et al.
7,721,933			Shelton, IV et al.	7,842,028		11/2010	
7,721,936			Shalton, IV et al.	7,845,533			Marczyk et al.
7,722,527	B2 5/2	2010	Bouchier et al.	7,845,534			Viola et al.
7,722,607			Dumbauld et al.	7,845,535		12/2010	
7,722,610			Viola et al.	7,845,536			Viola et al.
7,726,537 7,726,538			Olson et al. Holsten et al.	7,845,537 7,846,149		12/2010 12/2010	
7,726,538			Holsten et al.	7,840,149			
7,720,339			Timm et al.	7,850,042		12/2010	
7,731,724			Huitema et al.	7,857,183		12/2010	
7,735,703			Morgan et al.	7,857,185		12/2010	
7,736,374			Vaughan et al.	7,857,186	B2	12/2010	Baxter, III et al.
7,738,971	B2 6/2	2010	Swayze et al.	7,857,813	B2	12/2010	Schmitz et al.

(56)		Referen	ces Cited	8,002,785 8,002,795			Weiss et al. Beetel
	U.S. P	ATENT	DOCUMENTS	8,006,365	B2 8/	2011	Levin et al.
7.861.000	. D2	1/2011	D-11 -4 -1	8,006,885 8,006,889			Marczyk Adams et al.
7,861,906 7,862,579			Doll et al. Ortiz et al.	8,011,550			Aranyi et al.
7,866,525	B2	1/2011	Scirica	8,011,551			Marczyk et al.
7,866,527			Hall et al.	8,011,553 8,011,555			Mastri et al. Tarinelli et al.
7,866,528 7,870,989			Olson et al. Viola et al.	8,016,176			Kasvikis et al.
7,871,418	B2		Thompson et al.	8,016,177			Bettuchi et al.
7,879,070			Ortiz et al.	8,016,178 8,016,855			Olson et al. Whitman et al.
7,883,465 7,886,952			Donofrio et al. Scirica et al.	8,016,858			Whitman
7,887,530	B2	2/2011	Zemlok et al.	8,016,881		2011	
7,887,535		2/2011 2/2011	Lands et al.	8,020,742 8,020,743			Marczyk Shelton, IV
7,891,531 7,891,532			Mastri et al.	8,021,375	B2 9/	2011	Aldrich et al.
7,893,586	B2	2/2011	West et al.	8,025,199			Whitman et al.
7,896,214 7,896,215			Farascioni Adams et al.	8,028,883 8,028,884			Stopek Sniffin et al.
7,896,877			Hall et al.	8,028,885	B2 10/	2011	Smith et al.
7,900,805	B2		Shelton, IV et al.	8,034,077 8,034,363		2011	Smith et al. Li et al.
7,905,380 7,905,381			Shelton, IV et al. Baxter, III et al.	8,037,591			Spivey et al.
7,905,889			Catanese, III et al.	8,038,045	B2 10/	2011	Bettuchi et al.
7,905,902			Huitema et al.	8,038,046 8,038,686			Smith et al. Huitema et al.
7,909,191 7,909,220		3/2011	Baker et al.	8,043,207			Adams
7,909,221			Viola et al.	8,043,328	B2 10/		Hahnen et al.
7,913,891			Doll et al.	8,047,236 8,056,787		2011	Perry Boudreaux et al.
7,913,893 7,914,543			Mastri et al. Roth et al.	8,056,788			Mastri et al.
7,914,551	B2		Ortiz et al.	8,057,508			Shelton, IV
7,918,376			Knodel et al.	8,062,330 8,066,167			Prommersberger et al. Measamer et al.
7,918,377 7,918,848			Measamer et al. Lau et al.	8,066,168	B2 11/	2011	Vidal et al.
7,922,061	B2	4/2011	Shelton, IV et al.	D650,074			Hunt et al.
7,922,063 7,922,743			Zemlok et al. Heinrich et al.	8,070,743 8,075,571			Kagan et al. Vitali et al.
7,926,691			Viola et al.	8,083,118	B2 12/		Milliman et al.
7,927,328			Orszulak et al.	8,083,119 8,083,120			Prommersberger Shelton, IV et al.
7,931,660 7,931,695			Aranyi et al. Ringeisen	8,084,001			Burns et al.
7,934,630	B2	5/2011	Shelton, Iv et al.	8,091,756			Viola
7,934,631 7,935,773			Balbierz et al. Hadba et al.	8,092,932 8,097,017			Phillips et al. Viola
7,938,307			Bettuchi	8,100,310	B2 1/		Zemlok
7,941,865			Seman, Jr. et al.	8,105,350 8,108,072			Lee et al. Zhao et al.
7,942,303 7,942,890		5/2011	Shah D'Agostino et al.	8,109,426			Milliman et al.
7,944,175			Mori et al.	8,113,405			Milliman
7,950,560			Zemlok et al.	8,113,410 8,114,100			Hall et al. Smith et al.
7,950,561 7,951,071		5/2011 5/2011	Whitman et al.	8,123,103	B2 2/		Milliman
7,951,166	B2	5/2011	Orban et al.	8,123,767 8,127,975	B2 2/		Bauman et al. Olson et al.
7,954,682 7,954,684			Giordano et al. Boudreaux	8,128,624			Couture et al.
7,954,686			Baxter, III et al.	8,128,645	B2 3/	2012	Sonnenschein et al.
7,954,687			Zemlok et al.	8,132,703 8,132,706			Milliman et al. Marczyk et al.
7,955,257 7,959,050			Frasier et al. Smith et al.	8,136,712			Zingman
7,959,051	B2	6/2011	Smith et al.	8,136,713			Hathaway et al.
7,963,432 7,963,963			Knodel et al. Francischelli et al.	8,140,417 8,141,762		2012 2012	Shibata Bedi et al.
7,963,963			Santilli et al.	8,141,763	B2 3/	2012	Milliman
7,966,799			Morgan et al.	8,146,790 8,152,041			Milliman Kostrzewski
7,967,180 7,967,181		6/2011	Viola et al.	8,157,145			Shelton, IV et al.
7,967,839	B2		Flock et al.	8,157,148			Scirica
7,972,298			Wallace et al.	8,157,152 8,157,153		2012 2012	Holsten et al. Shelton, IV et al.
7,980,443 7,988,026			Scheib et al. Knodel et al.	8,157,133 8,161,977		2012	Shelton, IV et al.
7,988,027	B2	8/2011	Olson et al.	8,162,138	B2 4/	2012	Bettenhausen et al.
7,988,028			Farascioni et al.	8,162,197 8,167,185			Mastri et al.
7,992,757 7,997,469			Wheeler et al. Olson et al.	8,167,185 8,167,895			Shelton, IV et al. D'Agostino et al.
8,002,696	B2	8/2011	Suzuki	8,167,898	B1 5/	2012	Schaller et al.
8,002,784	B2	8/2011	Jinno et al.	8,172,120	B2 5/	2012	Boyden et al.

(56)	Referen	nces Cited	8,323,789		Rozhin et al.
U.S	S. PATENT	DOCUMENTS	8,328,062 8,328,063	B2 12/2012	Milliman et al.
0.150.100 DO	5/2012	** *** ***	8,328,064 8,328,802		Racenet et al. Deville et al.
8,172,122 B2 8,172,124 B2		Kasvikis et al. Shelton, IV et al.	8,328,823	B2 12/2012	Aranyi et al.
8,177,797 B2	5/2012	Shimoji et al.	8,333,313 8,333,764		Boudreaux et al. Francischelli et al.
8,180,458 B2 8,181,840 B2		Kane et al. Milliman	8,336,753	B2 12/2012	Olson et al.
8,186,555 B2	5/2012	Shelton, IV et al.	8,348,123 8,348,127		Scirica et al. Marczyk
8,186,560 B2 8,191,752 B2		Hess et al. Scirica	8,348,129	B2 1/2013	Bedi et al.
8,192,460 B2	6/2012	Orban, III et al.	8,348,131 8,348,972		Omaits et al. Soltz et al.
8,196,795 B2 8,196,796 B2		Moore et al	8,353,437		Boudreaux
8,201,721 B2	6/2012	Zemlok et al.	8,353,438 8,353,439		Baxter, III et al. Baxter, III et al.
8,205,780 B2 8,205,781 B2		Sorrentino et al. Baxter, III et al.	8,357,144	B2 1/2013	Whitman et al.
8,210,411 B2	7/2012	Yates et al.	8,360,296 8,360,297		Zingman Shelton, IV et al.
8,210,414 B2 8,210,415 B2	7/2012 7/2012	Bettuchi et al. Ward	8,360,298		Farascioni et al.
8,210,416 B2	7/2012	Milliman et al.	8,360,299 8,365,973		Zemlok et al. White et al.
8,211,125 B2 8,214,019 B2		Spivey Govari et al.	8,365,976		Hess et al.
8,215,531 B2	7/2012	Shelton, IV et al.	8,366,559 8,371,491		Papenfuss et al. Huitema et al.
8,215,533 B2 8,220,468 B2		Viola et al. Cooper et al.	8,371,491		Aranyi et al.
8,220,688 B2	7/2012	Laurent et al.	8,371,493		Aranyi et al. Bettuchi et al.
8,220,690 B2 8,221,424 B2	7/2012 7/2012	Hess et al.	8,372,094 8,376,865		Forster et al.
8,225,799 B2	7/2012	Bettuchi	8,377,044		Coe et al.
8,226,715 B2 8,231,040 B2		Hwang et al. Zemlok et al.	8,393,513 8,393,514		Jankowski Shelton, IV et al.
8,231,041 B2	7/2012	Marczyk et al.	8,397,971		Yates et al.
8,231,042 B2 8,231,043 B2		Hessler et al. Tarinelli et al.	8,403,138 8,403,198		Weisshaupt et al. Sorrentino et al.
8,236,010 B2	8/2012	Ortiz et al.	8,403,945	B2 3/2013	Whitfield et al.
8,241,271 B2 8,241,308 B2		Millman et al. Kortenbach et al.	8,408,439 8,408,442		Huang et al. Racenet et al.
8,241,322 B2	8/2012	Whitman et al.	8,409,079		Okamoto et al.
8,245,898 B2 8,245,899 B2		Smith et al. Swensgard et al.	8,409,222 8,413,870		Whitfield et al. Pastorelli et al.
8,245,900 B2	8/2012	Scirica	8,413,871	B2 4/2013	Racenet et al.
8,245,901 B2 8,246,637 B2		Stopek Viola et al.	8,413,872 8,414,577		Patel Boudreaux et al.
8,256,654 B2		Bettuchi et al.	8,424,737	B2 4/2013	Scirica
8,256,655 B2 8,257,251 B2		Sniffin et al. Shelton, IV et al.	8,424,739 8,424,740		Racenet et al. Shelton, IV et al.
8,257,356 B2	9/2012	Bleich et al.	8,424,741	B2 4/2013	McGuckin, Jr. et al.
8,257,391 B2 8,267,300 B2		Orban, III et al. Boudreaux	8,430,898 8,439,246		Wiener et al. Knodel et al.
8,267,924 B2	9/2012	Zemlok et al.	8,444,036	B2 5/2013	Shelton, IV
8,267,946 B2 8,267,951 B2		Whitfield et al. Whayne et al.	8,444,549 8,453,904		Viola et al. Eskaros et al.
8,269,121 B2	9/2012		8,453,907		Laurent et al.
8,272,553 B2 8,272,554 B2		Mastri et al. Whitman et al.	8,453,908 8,453,912		Bedi et al. Mastri et al.
8,276,801 B2	10/2012	Zemlok et al.	8,453,914		Laurent et al.
8,276,802 B2 8,281,973 B2		Kostrzewski Wenchell et al.	8,459,520 8,459,525		Giordano et al. Yates et al.
8,286,845 B2	10/2012	Perry et al.	8,464,922	B2 6/2013	Marczyk
8,287,561 B2 8,292,151 B2	10/2012 10/2012	Nunez et al. Viola	8,464,923 8,464,924		Shelton, IV Gresham et al.
8,292,155 B2	10/2012	Shelton, IV et al.	8,464,925		Hull et al.
8,292,157 B2 8,292,888 B2		Smith et al. Whitman	8,474,677 8,475,453		Woodard, Jr. et al. Marczyk et al.
8,298,677 B2	10/2012	Wiesner et al.	8,475,474		Bombard et al. Shelton, IV
8,308,040 B2 8,308,042 B2		Huang et al.	8,479,969 8,485,412		Shelton, IV et al.
8,308,046 B2	11/2012	Prommersberger	8,485,413		Scheib et al.
8,308,659 B2 8,313,496 B2		Scheibe et al. Sauer et al.	8,490,853 8,496,156		Criscuolo et al. Sniffin et al.
8,313,509 B2	11/2012	Kostrzewski	8,496,683	B2 7/2013	Prommersberger et al.
8,317,070 B2 8,317,071 B1	11/2012 11/2012	Hueil et al.	8,499,993 8,500,762		Shelton, IV et al. Sholev et al.
8,317,071 B1 8,317,074 B2		Ortiz et al.	8,506,557		Zemlok et al.
8,319,002 B2	11/2012	Daniels et al.	8,517,239 8,517,241		Scheib et al.
8,322,455 B2 8,322,589 B2		Shelton, IV et al. Boudreaux	8,517,241 8,517,243		Nicholas et al. Giordano et al.

(56)	Referen	nces Cited	8,763,877			Schall et al.
211	DATENIT	DOCUMENTS	8,777,004 8,783,541			Shelton, IV et al. Shelton, IV et al.
0.5.	IAIDNI	DOCUMENTS	8,783,542			Riestenberg et al.
8,517,244 B2	8/2013	Shelton, IV et al.	8,783,543			Shelton, IV et al.
8,523,881 B2		Cabiri et al.	8,789,739 8,789,740			Swensgard
8,529,588 B2		Ahlberg et al. Woodard, Jr. et al.	8,789,740 8,789,741			Baxter, III et al. Baxter, III et al.
8,529,600 B2 8,534,528 B2	9/2013	,	8,794,497			Zingman
8,535,304 B2		Sklar et al.	8,800,838			Shelton, IV
8,540,128 B2		Shelton, IV et al.	8,800,841			Ellerhorst et al. Shelton, IV et al.
8,540,129 B2 8,540,130 B2		Baxter, III et al. Moore et al.	8,801,734 8,801,735			Shelton, IV et al.
8,540,130 B2 8,540,131 B2		Swayze	8,814,024			Woodard, Jr. et al.
8,540,133 B2		Bedi et al.	8,820,605			Shelton, IV
8,540,733 B2		Whitman et al.	8,827,133 8,827,903			Shelton, IV et al. Shelton, IV et al.
8,556,151 B2 8,561,870 B2	10/2013	Viola Baxter, III et al.	8,833,632			Swensgard
8,561,873 B2		Ingmanson et al.	8,840,003		9/2014	Morgan et al.
8,567,656 B2		Shelton, IV et al.	8,840,603		9/2014	Shelton, IV et al.
8,573,461 B2		Shelton, IV et al.	8,844,789 8,851,354			Shelton, IV et al. Swensgard et al.
8,573,465 B2 8,579,937 B2		Shelton, IV et al. Gresham	8,857,693			Schuckmann et al.
8,584,919 B2		Hueil et al.	8,857,694			Shelton, IV et al.
8,585,721 B2	11/2013		8,858,571			Shelton, IV et al.
8,590,762 B2		Hess et al.	8,858,590 8,864,007			Shelton, IV et al. Widenhouse et al.
8,602,287 B2 8,602,288 B2		Yates et al. Shelton, IV et al.	8,864,009			Shelton, IV et al.
8,608,044 B2		Hueil et al.	2001/0025183			Shahidi
8,608,045 B2		Smith et al.	2001/0044637 2002/0022836			Jacobs et al. Goble et al.
8,608,046 B2 8,616,431 B2		Laurent et al. Timm et al.	2002/0022836			Goble et al.
8,622,274 B2		Yates et al.	2002/0095175	A1		Brock et al.
8,622,275 B2		Baxter, III et al.	2002/0103494		8/2002	
8,631,987 B2		Shelton, IV et al.	2002/0117534 2002/0134811			Green et al. Napier et al.
8,632,462 B2 8,632,525 B2		Yoo et al. Kerr et al.	2002/0165541			Whitman
8,632,535 B2		Shelton, IV et al.	2003/0023316			Brown et al.
8,632,563 B2		Nagase et al.	2003/0078647 2003/0084983			Vallana et al. Rangachari et al.
8,636,187 B2 8,636,736 B2		Hueil et al. Yates et al.	2003/0093103			Malackowski et al.
8,647,258 B2		Aranyi et al.	2003/0096158		5/2003	Takano et al.
8,652,120 B2		Giordano et al.	2003/0105478			Whitman et al.
8,652,151 B2		Lehman et al.	2003/0130677 2003/0139741			Whitman et al. Goble et al.
8,657,174 B2 8,657,176 B2		Yates et al. Shelton, IV et al.	2003/0153908		8/2003	
8,657,178 B2		Hueil et al.	2003/0163085		8/2003	Tanner et al.
8,668,129 B2	3/2014		2003/0181900 2003/0195387		9/2003	Long Kortenbach et al.
8,668,130 B2 8,672,206 B2		Hess et al. Aranyi et al.	2003/0195387		11/2003	
8,672,200 B2 8,672,207 B2		Shelton, IV et al.	2003/0216732		11/2003	Truckai et al.
8,672,208 B2	3/2014	Hess et al.	2003/0220660			Kortenbach et al.
8,679,454 B2		Guire et al.	2003/0236505 2004/0002726			Bonadio et al. Nunez et al.
8,684,253 B2 8,695,866 B2		Giordano et al. Leimbach et al.	2004/0006335			Garrison
8,696,665 B2	4/2014	Hunt et al.	2004/0006340			Latterell et al.
8,701,958 B2		Shelton, IV et al.	2004/0006372 2004/0006861		1/2004	Racenet et al. Haytayan
8,701,959 B2 8,708,213 B2	4/2014	Shah Shelton, IV et al.	2004/0000801		2/2004	
8,720,766 B2		Hess et al.	2004/0034357	A1		Beane et al.
8,721,666 B2	5/2014	Schroeder et al.	2004/0034369		2/2004	Sauer et al. DeVries et al.
8,727,197 B2		Hess et al. Huitema et al.	2004/0044364 2004/0068161			Couvillon, Jr.
8,733,613 B2 8,734,478 B2		Widenhouse et al.	2004/0068224			Couvillon, Jr. et al.
8,740,034 B2		Morgan et al.	2004/0068307		4/2004	
8,740,037 B2		Shelton, IV et al.	2004/0070369 2004/0073222			Sakakibara Koseki
8,740,038 B2 8,746,529 B2		Shelton, IV et al. Shelton, IV et al.	2004/0078037			Batchelor et al.
8,746,530 B2		Giordano et al.	2004/0093024	A1	5/2004	Lousararian et al.
8,746,535 B2	6/2014	Shelton, IV et al.	2004/0094597			Whitman et al.
8,747,238 B2		Shelton, IV et al.	2004/0097987 2004/0098040		5/2004 5/2004	Pugsley et al. Taniguchi et al.
8,752,699 B2 8,752,747 B2		Morgan et al. Shelton, IV et al.	2004/0098040			Wiesner et al.
8,752,749 B2*		Moore et al 227/176.1	2004/0102783		5/2004	
8,757,465 B2	6/2014	Woodard, Jr. et al.	2004/0108357		6/2004	Milliman et al.
8,758,235 B2		Jaworek	2004/0111081		6/2004	
8,758,391 B2 8,758,438 B2		Swayze et al. Boyce et al.	2004/0115022 2004/0116952		6/2004 6/2004	Albertson et al. Sakurai et al.
8,763,875 B2		Morgan et al.	2004/0147909			Johnston et al.
•		-				

(56)	Referen	ices Cited	2005/0261676 2005/0261677			Hall et al. Hall et al.
U.S.	. PATENT	DOCUMENTS	2005/0263563	A1	12/2005	Racenet et al.
2004/0164123 A1	9/2004	Racenet et al.	2005/0267455 2005/0274768			Eggers et al. Cummins et al.
2004/0164123 A1 2004/0167572 A1		Roth et al.	2005/0283188	A1	12/2005	Loshakove et al.
2004/0173659 A1		Green et al.	2006/0004407 2006/0008787			Hiles et al. Hayman et al.
2004/0181219 A1 2004/0186470 A1		Goble et al. Goble et al.	2006/0011699			Olson et al.
2004/0193189 A1	9/2004	Kortenbach et al.	2006/0015009			Jaffe et al.
2004/0199181 A1 2004/0222268 A1		Knodel et al. Bilotti et al.	2006/0020247 2006/0020258		1/2006 1/2006	Kagan et al. Strauss et al.
2004/0222208 A1 2004/0225186 A1		Horne, Jr. et al.	2006/0020336	A1	1/2006	Liddicoat
2004/0230214 A1		Donofrio et al.	2006/0025811 2006/0025812		2/2006 2/2006	Shelton, IV Shelton, IV
2004/0232201 A1 2004/0236352 A1		Wenchell et al. Wang et al.	2006/0025812		2/2006	
2004/0243147 A1	12/2004	Lipow	2006/0041188			Dirusso et al.
2004/0243151 A1 2004/0243163 A1		Demmy et al. Casiano et al.	2006/0047275 2006/0047303		3/2006 3/2006	Goble Ortiz et al.
2004/0243105 A1 2004/0243176 A1		Hahnen et al.	2006/0047307	A1	3/2006	Ortiz et al.
2004/0247415 A1	12/2004		2006/0049229 2006/0052825			Milliman et al. Ransick et al.
2004/0254566 A1 2004/0254608 A1		Plicchi et al. Huitema et al.	2006/0060630		3/2006	
2004/0260315 A1	12/2004	Dell et al.	2006/0064086		3/2006	
2004/0267310 A1 2005/0010213 A1		Racenet et al. Stad et al.	2006/0079115 2006/0079735			Aranyi et al. Martone et al.
2005/0032511 A1		Malone et al.	2006/0085031		4/2006	Bettuchi
2005/0033357 A1		Braun	2006/0085033 2006/0086032			Criscuolo et al. Valencic et al.
2005/0054946 A1 2005/0059997 A1		Krzyzanowski Bauman et al.	2006/0080032		4/2006	
2005/0070929 A1	3/2005	Dalessandro et al.	2006/0089535			Raz et al.
2005/0075561 A1 2005/0080454 A1		Golden Drews et al.	2006/0100643 2006/0108393			Laufer et al. Heinrich et al.
2005/0085693 A1		Belson et al.	2006/0111711	A1	5/2006	Goble
2005/0090817 A1	4/2005		2006/0111723 2006/0122636			Chapolini et al. Bailly et al.
2005/0096683 A1 2005/0103819 A1		Ellins et al. Racenet et al.	2006/0122030		6/2006	
2005/0107814 A1	5/2005	Johnston et al.	2006/0149163			Hibner et al.
2005/0107824 A1 2005/0113820 A1		Hillstead et al. Goble et al.	2006/0161185 2006/0167471		7/2006 7/2006	Saadat et al. Phillips
2005/0113820 A1 2005/0119525 A1		Takemoto	2006/0173470	A1	8/2006	Oray et al.
2005/0119669 A1		Demmy	2006/0178556 2006/0180634		8/2006 8/2006	Hasser et al. Shelton, IV et al.
2005/0124855 A1 2005/0125009 A1		Jaffe et al. Perry et al.	2006/0185682		8/2006	Marczyk
2005/0125897 A1	6/2005	Wyslucha et al.	2006/0200123		9/2006	Ryan
2005/0131173 A1 2005/0131211 A1		McDaniel et al. Bayley et al.	2006/0201989 2006/0212069		9/2006 9/2006	Ojeda Shelton, IV
2005/0131211 A1 2005/0131390 A1		Heinrich et al.	2006/0217729	A1	9/2006	Eskridge et al.
2005/0131436 A1		Johnston et al.	2006/0226196 2006/0235368		10/2006 10/2006	Hueil et al.
2005/0131437 A1 2005/0131457 A1	6/2005 6/2005	Johnston et al. Douglas et al.	2006/0235469		10/2006	
2005/0137454 A1	6/2005	Saadat et al.	2006/0241655		10/2006	
2005/0137455 A1 2005/0143759 A1		Ewers et al.	2006/0241692 2006/0244460		11/2006	McGuckin, Jr. et al. Weaver
2005/0143769 A1	6/2005 6/2005	White et al.	2006/0252993	A1	11/2006	Freed et al.
2005/0145675 A1		Hartwick et al.	2006/0253069 2006/0258904		11/2006 11/2006	
2005/0154258 A1 2005/0154406 A1		Tartaglia et al. Bombard et al.	2006/0258910		11/2006	Stefanchik et al.
2005/0165419 A1	7/2005	Sauer et al.	2006/0259073			Miyamoto et al.
2005/0165435 A1 2005/0169974 A1		Johnston et al. Tenerz et al.	2006/0264927 2006/0264929		11/2006 11/2006	Goble et al.
2005/0171522 A1		Christopherson	2006/0271042	A1	11/2006	Latterell et al.
2005/0177181 A1		Kagan et al.	2006/0271102 2006/0278680			Bosshard et al. Viola et al.
2005/0182298 A1 2005/0187545 A1		Ikeda et al. Hooven et al.	2006/0278681			Viola et al.
2005/0187572 A1	8/2005	Johnston et al.	2006/0284730 2006/0287576			Schmid et al. Tsuji et al.
2005/0187576 A1 2005/0189397 A1		Whitman et al. Jankowski	2006/0287376			Wales et al.
2005/0192609 A1		Whitman et al.	2006/0291981			Viola et al.
2005/0192628 A1	9/2005		2007/0010838 2007/0023476		1/2007 2/2007	Shelton, IV et al. Whitman et al.
2005/0203550 A1 2005/0216055 A1		Laufer et al. Scirica et al.	2007/0023470			Whitman et al.
2005/0228224 A1	10/2005	Okada et al.	2007/0027468			Wales et al.
2005/0240178 A1 2005/0240222 A1	10/2005 10/2005	Morley et al.	2007/0027469 2007/0027472		2/2007 2/2007	Smith et al. Hiles et al.
2005/0240222 A1 2005/0245965 A1		Orban, III et al.	2007/0027472			Farnsworth et al.
2005/0251128 A1	11/2005	Amoah	2007/0034668	A1	2/2007	Holsten et al.
2005/0256452 A1		DeMarchi et al.	2007/0049966			Bonadio et al.
2005/0256522 A1	11/2005	Francischelli et al.	2007/0051375	Al	3/200/	Milliman

(56)	Referen	ces Cited	2008/0172088 2008/0183193			Smith et al. Omori et al.
U.S.	PATENT	DOCUMENTS	2008/0185419	$\mathbf{A}1$	8/2008	Smith et al.
2007/0077240	a (a a a =		2008/0190989 2008/0197167			Crews et al. Viola et al.
2007/0055219 A1 2007/0066981 A1		Whitman et al. Meagher	2008/019/10/			Stokes et al.
2007/0070574 A1		Nerheim et al.	2008/0200835			Monson et al.
2007/0073341 A1	3/2007		2008/0200933 2008/0200949			Bakos et al. Hiles et al.
2007/0078484 A1 2007/0083193 A1		Talarico et al. Werneth et al.	2008/0228029			Mikkaichi et al.
2007/0084897 A1		Shelton, IV et al.	2008/0245841		10/2008	
2007/0093869 A1		Bloom et al.	2008/0251568 2008/0251569			Zemlok et al. Smith et al.
2007/0102472 A1 2007/0106113 A1	5/2007	Shelton, IV Ravo	2008/0255413		10/2008	Zemlok et al.
2007/0106317 A1		Shelton, IV et al.	2008/0255607 2008/0262654		10/2008	Zemlok Omori et al.
2007/0118175 A1 2007/0129605 A1	5/2007 6/2007	Butler et al.	2008/0283570			Boyden et al.
2007/0125686 A1		Pruitt, Jr. et al.	2008/0287944			Pearson et al.
2007/0135803 A1	6/2007		2008/0290134 2008/0294179			Bettuchi et al. Balbierz et al.
2007/0155010 A1 2007/0158358 A1		Farnsworth et al. Mason, II et al.	2008/0296346			Shelton, IV et al.
2007/0170225 A1	7/2007	Shelton, IV et al.	2008/0297287		12/2008	
2007/0173687 A1 2007/0173806 A1		Shima et al. Orszulak et al.	2008/0308602 2008/0308603		12/2008	Timm et al. Shelton, IV et al.
2007/0173800 A1 2007/0173813 A1	7/2007		2008/0308608	A1	12/2008	Prommersberger
2007/0175950 A1		Shelton, IV et al.	2008/0314960 2008/0315829			Marczyk et al. Jones et al.
2007/0175951 A1 2007/0175955 A1		Shelton, IV et al. Shelton, IV et al.	2009/0001121			Hess et al.
2007/0179528 A1		Soltz et al.	2009/0001122		1/2009	Prommersberger et al.
2007/0181632 A1		Milliman	2009/0001130 2009/0005807			Hess et al. Hess et al.
2007/0194079 A1 2007/0194082 A1		Hueil et al. Morgan et al.	2009/0005809			Hess et al.
2007/0203510 A1	8/2007	Bettuchi	2009/0012534			Madhani et al.
2007/0213750 A1		Weadock	2009/0012556 2009/0018553		1/2009	Boudreaux et al. McLean et al.
2007/0219571 A1 2007/0221700 A1		Balbierz et al. Ortiz et al.	2009/0020958		1/2009	
2007/0225562 A1	9/2007	Spivey et al.	2009/0048589		2/2009	
2007/0233163 A1		Bombard et al.	2009/0048612 2009/0054908			Farritor et al. Zand et al.
2007/0239028 A1 2007/0243227 A1	10/2007	Houser et al. Gertner	2009/0076506		3/2009	
2007/0244471 A1	10/2007	Malackowski	2009/0078736 2009/0082789			Van Lue Milliman et al.
2007/0246505 A1 2007/0249999 A1		Pace-Floridia et al. Sklar et al.	2009/0082789		4/2009	
2007/0249999 A1 2007/0260278 A1		Wheeler et al.	2009/0090763	$\mathbf{A}1$	4/2009	Zemlok et al.
2007/0270784 A1		Smith et al.	2009/0092651 2009/0093728		4/2009	Shah et al. Hyde et al.
2007/0270884 A1 2007/0276409 A1		Smith et al. Ortiz et al.	2009/0099876		4/2009	Whitman
2007/0279011 A1		Jones et al.	2009/0108048			Zemlok et al.
2007/0286892 A1		Herzberg et al. Hinman et al.	2009/0112229 2009/0114701			Omori et al. Zemlok et al.
2007/0287993 A1 2007/0288044 A1		Jinno et al.	2009/0143805	A1		Palmer et al.
2007/0299427 A1	12/2007	Yeung et al.	2009/0143855 2009/0149871			Weber et al. Kagan et al.
2008/0015598 A1 2008/0029570 A1		Prommersberger Shelton et al.	2009/01498/1			Kagan et al.
2008/0029573 A1		Shelton et al.	2009/0157087	A1	6/2009	Wei et al.
2008/0029574 A1		Shelton et al.	2009/0171147 2009/0188964		7/2009 7/2009	Lee et al.
2008/0029575 A1 2008/0030170 A1		Shelton et al. Dacquay et al.	2009/0198272			Kerver et al.
2008/0035701 A1	2/2008	Racenet et al.	2009/0204108		8/2009	
2008/0041916 A1		Milliman et al.	2009/0206125 2009/0206126			Huitema et al. Huitema et al.
2008/0041917 A1 2008/0078802 A1		Racenet et al. Hess et al.	2009/0206131		8/2009	Weisenburgh, II et al.
2008/0082114 A1	4/2008	McKenna et al.	2009/0206133			Morgan et al.
2008/0082125 A1 2008/0082126 A1		Murray et al. Murray et al.	2009/0206137 2009/0206139			Hall et al. Hall et al.
2008/0082120 A1 2008/0083808 A1	4/2008		2009/0206141	A1	8/2009	Huitema et al.
2008/0083813 A1	4/2008	Zemlok et al.	2009/0206142 2009/0213685		8/2009 8/2009	Huitema et al. Mak et al.
2008/0085296 A1 2008/0086078 A1		Powell et al. Powell et al.	2009/0213083		10/2009	
2008/0114315 A1		Voegele et al.	2009/0255974	A1	10/2009	Viola
2008/0114385 A1		Byrum et al.	2009/0255975			Zemlok et al.
2008/0128469 A1 2008/0129253 A1		Dalessandro et al. Shiue et al.	2009/0255976 2009/0255977		10/2009	Marczyk et al. Zemlok
2008/0140115 A1	6/2008	Stopek	2009/0255978	A1	10/2009	Viola et al.
2008/0154299 A1	6/2008	Livneh	2009/0270895		10/2009	
2008/0169328 A1 2008/0169332 A1		Shelton Shelton et al.	2009/0277949 2009/0292283		11/2009 11/2009	Viola et al. Odom
2008/0169332 A1 2008/0169333 A1		Shelton et al.	2009/0292283			Nalagatla et al.
2008/0172087 A1		Fuchs et al.	2010/0010511			Harris et al.

(56)	Referen	ices Cited	2011/0155784			Shelton, IV et al.
U.S.	PATENT	DOCUMENTS	2011/0155786 2011/0155787 2011/0163146	$\mathbf{A}1$	6/2011	Shelton, IV Baxter, III et al. Ortiz et al.
2010/0012704 A1 2010/0023024 A1	1/2010	Tarinelli Racenet et al. Zeiner et al.	2011/0103140 2011/0174099 2011/0174861 2011/0174862	A1 A1	7/2011 7/2011	Ross et al. Shelton, IV et al. Shelton, IV et al.
2010/0036370 A1 2010/0049084 A1	2/2010	Mirel et al. Nock et al.	2011/0174802 2011/0178536 2011/0192882	A1	7/2011	Kostrzewski Hess et al.
2010/0057087 A1 2010/0057107 A1		Sorrentino et al.	2011/0210156 2011/0253765	$\mathbf{A}1$	9/2011	Smith et al. Nicholas et al.
2010/0069942 A1 2010/0072254 A1	3/2010	Shelton, IV Aranyi et al.	2011/0275901 2011/0276083	$\mathbf{A}1$	11/2011	Shelton, IV Shelton, IV et al.
2010/0076475 A1 2010/0076483 A1	3/2010		2011/0278343 2011/0282446	$\mathbf{A}1$	11/2011	Knodel et al. Schulte et al.
2010/0076489 A1 2010/0087840 A1	4/2010	Stopek et al. Ebersole et al.	2011/0288573	$\mathbf{A}1$	11/2011	Yates et al.
2010/0094289 A1 2010/0096431 A1	4/2010	Taylor et al. Smith et al.	2011/0290851 2011/0290853	$\mathbf{A}1$	12/2011	Shelton, IV Shelton, IV et al.
2010/0108740 A1 2010/0108741 A1		Pastorelli et al. Hessler et al.	2011/0290854 2011/0290856	$\mathbf{A}1$	12/2011	Timm et al. Shelton, IV et al.
2010/0133317 A1 2010/0145146 A1		Shelton, IV et al. Melder	2011/0295242 2011/0295269	A1	12/2011	Spivey et al. Swensgard et al.
2010/0147921 A1 2010/0147922 A1	6/2010 6/2010	Olson	2011/0295295 2012/0004636		12/2011 1/2012	Shelton, IV et al. Lo
2010/0147923 A1 2010/0163598 A1	6/2010	D'Agostino et al. Belzer	2012/0022523 2012/0022630			Smith et al. Wübbeling
2010/0179022 A1	7/2010	Shirokoshi	2012/0029272 2012/0046692	A1	2/2012	Shelton, IV et al. Smith et al.
2010/0179540 A1 2010/0186219 A1	7/2010		2012/0071711 2012/0074200	A1	3/2012	Shelton, IV et al. Schmid et al.
2010/0193566 A1 2010/0200637 A1	8/2010	Scheib et al. Beetel	2012/0080332	A1	4/2012	Shelton, IV et al.
2010/0204717 A1 2010/0222901 A1		Knodel Swayze et al.	2012/0080336 2012/0080337	A1	4/2012	Shelton, IV et al. Shelton, IV et al.
2010/0230465 A1 2010/0243707 A1		Smith et al. Olson et al.	2012/0080338 2012/0080340	A1	4/2012	Shelton, IV et al. Shelton, IV et al.
2010/0243708 A1 2010/0249519 A1		Aranyi et al. Park et al.	2012/0080344 2012/0080475		4/2012	Shelton, IV Smith et al.
2010/0258611 A1 2010/0268030 A1	10/2010	Smith et al. Viola et al.	2012/0080478 2012/0080479			Morgan et al. Shelton, IV
2010/0276471 A1	11/2010	Whitman	2012/0080482 2012/0080484	$\mathbf{A}1$		Schall et al. Morgan et al.
2010/0292540 A1 2010/0294827 A1	11/2010	Hess et al. Boyden et al.	2012/0080485 2012/0080486	$\mathbf{A}1$	4/2012	Woodard, Jr. et al. Woodard, Jr. et al.
2010/0305552 A1 2010/0312261 A1	12/2010	Shelton, IV et al. Suzuki et al.	2012/0080488	$\mathbf{A}1$	4/2012	Shelton, IV et al. Shelton, IV et al.
2010/0320252 A1 2010/0331856 A1	12/2010	Viola et al. Carlson et al.	2012/0080491 2012/0080493	$\mathbf{A}1$	4/2012	Shelton, IV et al.
2010/0331880 A1 2011/0003528 A1	12/2010 1/2011		2012/0080498 2012/0080499	$\mathbf{A}1$	4/2012	Shelton, IV et al. Schall et al.
2011/0006099 A1 2011/0006101 A1		Hall et al. Hall et al.	2012/0080502 2012/0083835	$\mathbf{A}1$	4/2012	Morgan et al. Shelton, IV et al.
2011/0011916 A1 2011/0017799 A1	1/2011	Levine Whitman et al.	2012/0083836 2012/0138658			Shelton, IV et al. Ullrich et al.
2011/0017801 A1 2011/0022032 A1	1/2011	Zemlok et al. Zemlok et al.	2012/0150192 2012/0175398			Dachs, II et al. Sandborn et al.
2011/0024477 A1 2011/0024478 A1	2/2011	Hall et al. Shelton, IV	2012/0187179 2012/0199632	$\mathbf{A}1$	7/2012	Gleiman Spivey et al.
2011/0024479 A1	2/2011	Swensgard et al.	2012/0209289 2012/0223123	$\mathbf{A}1$	8/2012	Duque et al. Baxter, III et al.
2011/0034918 A1 2011/0036887 A1	2/2011	Reschke Zemlok et al.	2012/0234890 2012/0234891	A1	9/2012	Aronhalt et al. Aronhalt et al.
2011/0036890 A1 2011/0036891 A1		Zemlok et al.	2012/0234892	$\mathbf{A}1$	9/2012	Aronhalt et al.
2011/0045047 A1 2011/0060363 A1	3/2011	Bennett et al. Hess et al.	2012/0234895 2012/0234897	A1	9/2012	O'Connor et al. Shelton, IV et al.
2011/0068148 A1 2011/0084112 A1		Hall et al. Kostrzewski	2012/0234898 2012/0234899	A1	9/2012	Shelton, IV et al. Scheib et al.
2011/0087276 A1 2011/0087279 A1		Bedi et al. Shah et al.	2012/0238823 2012/0238824	A1	9/2012	Hagerty et al. Widenhouse et al.
2011/0095068 A1 2011/0101065 A1	4/2011		2012/0239009 2012/0239010			Mollere et al. Shelton, IV et al.
2011/0114697 A1 2011/0114700 A1	5/2011	Baxter, III et al. Baxter, III et al.	2012/0241491 2012/0241492	$\mathbf{A}1$	9/2012	Aldridge et al. Shelton, IV et al.
2011/0118754 A1	5/2011	Dachs, II et al.	2012/0241493 2012/0241496	$\mathbf{A}1$	9/2012	Baxter, III et al. Mandakolathur Vasudevan et al.
2011/0118778 A1 2011/0125176 A1	5/2011	Burbank Yates et al.	2012/0241497	A1	9/2012	Mandakolathur Vasudevan et al.
2011/0125177 A1 2011/0132964 A1		Yates et al. Weisenburgh, II et al.	2012/0241498 2012/0241499		9/2012	Gonzalez et al. Baxter, III et al.
2011/0144430 A1 2011/0144640 A1	6/2011	Spivey et al. Heinrich et al.	2012/0241500 2012/0241501			Timmer et al. Swayze et al.
2011/0147433 A1		Shelton, IV et al.	2012/0241502			Aldridge et al.

(56)	References Cited	2013/0206814 A1 2013/0214030 A1	8/2013 8/2013	Morgan et al. Aronhalt et al.
U.S	. PATENT DOCUMENTS	2013/0221063 A1	8/2013	Aronhalt et al.
2012/0241503 A1	9/2012 Baxter, III et al.	2013/0221064 A1 2013/0221065 A1	8/2013 8/2013	Aronhalt et al. Aronhalt et al.
2012/0241505 A1	9/2012 Alexander, III et al.	2013/0233906 A1		Hess et al.
2012/0248169 A1 2012/0253298 A1	10/2012 Widenhouse et al. 10/2012 Henderson et al.	2013/0248576 A1 2013/0248577 A1		Laurent et al. Leimbach et al.
2012/0233298 A1 2012/0265176 A1	10/2012 Henderson et al. 10/2012 Braun	2013/0256365 A1	10/2013	Shelton, IV et al.
2012/0273550 A1	11/2012 Scirica	2013/0256366 A1 2013/0256367 A1	10/2013 10/2013	Shelton, IV et al. Scheib et al.
2012/0283707 A1 2012/0283748 A1	11/2012 Giordano et al. 11/2012 Ortiz et al.	2013/0256368 A1	10/2013	Timm et al.
2012/0289979 A1	11/2012 Eskaros et al.	2013/0256369 A1 2013/0256371 A1	10/2013 10/2013	Schmid et al. Shelton, IV et al.
2012/0292367 A1 2012/0296333 A1	11/2012 Morgan et al. 11/2012 Twomey	2013/0256372 A1	10/2013	Baxter, III et al.
2012/0298719 A1	11/2012 Shelton, IV et al.	2013/0256373 A1 2013/0256374 A1	10/2013 10/2013	Schmid et al. Shelton, IV et al.
2012/0298722 A1 2012/0310255 A1	11/2012 Hess et al. 12/2012 Brisson et al.	2013/0256375 A1	10/2013	Shelton, IV et al.
2012/0310256 A1	12/2012 Brisson	2013/0256376 A1 2013/0256377 A1	10/2013 10/2013	Barton et al. Schmid et al.
2012/0312860 A1 2012/0318842 A1	12/2012 Ming et al. 12/2012 Anim et al.	2013/0256377 A1 2013/0256378 A1	10/2013	Schmid et al.
2012/0318843 A1	12/2012 Henderson et al.	2013/0256379 A1 2013/0256380 A1	10/2013 10/2013	Schmid et al. Schmid et al.
2012/0318844 A1 2012/0325892 A1	12/2012 Shelton, IV et al. 12/2012 Kostrzewski	2013/0256380 A1 2013/0256382 A1	10/2013	Swayze et al.
2013/0012931 A1	1/2013 Spivey et al.	2013/0256383 A1	10/2013 10/2013	Aronhalt et al.
2013/0018361 A1 2013/0020375 A1	1/2013 Bryant 1/2013 Shelton, IV et al.	2013/0261648 A1 2013/0270322 A1	10/2013	Laurent et al. Scheib et al.
2013/0020376 A1	1/2013 Shelton, IV et al.	2013/0277412 A1	10/2013	
2013/0023861 A1 2013/0026208 A1	1/2013 Shelton, IV et al. 1/2013 Shelton, IV et al.	2013/0310873 A1 2013/0313303 A1	11/2013 11/2013	Stopek et al. Shelton, IV et al.
2013/0026210 A1	1/2013 Shelton, IV et al.	2013/0313304 A1	11/2013	
2013/0037596 A1 2013/0048697 A1	2/2013 Bear et al. 2/2013 Shelton, IV et al.	2013/0313306 A1 2013/0324981 A1	11/2013 12/2013	Shelton, IV et al. Smith et al.
2013/0048097 A1 2013/0056518 A1	3/2013 Swensgard	2013/0324982 A1	12/2013	Smith et al.
2013/0056521 A1 2013/0062391 A1	3/2013 Swensgard 3/2013 Boudreaux et al.	2013/0327809 A1 2013/0327810 A1	12/2013 12/2013	Shelton, IV et al. Swayze et al.
2013/0002391 A1 2013/0075448 A1	3/2013 Schmid et al.	2013/0334278 A1	12/2013	Kerr et al.
2013/0075449 A1	3/2013 Schmid et al.	2013/0334283 A1 2013/0334284 A1	12/2013 12/2013	Swayze et al. Swayze et al.
2013/0075450 A1 2013/0079814 A1	3/2013 Schmid et al. 3/2013 Hess et al.	2013/0334285 A1	12/2013	Swayze et al.
2013/0087597 A1	4/2013 Shelton, IV et al.	2013/0334286 A1 2013/0334287 A1	12/2013 12/2013	Swayze et al. Shelton, IV
2013/0087599 A1 2013/0087602 A1	4/2013 Krumanaker et al. 4/2013 Olson et al.	2013/0334288 A1	12/2013	Shelton, IV
2013/0098970 A1	4/2013 Racenet et al.	2013/0341374 A1 2014/0000411 A1	12/2013 1/2014	Shelton, IV et al. Shelton, IV et al.
2013/0103024 A1 2013/0116668 A1	4/2013 Monson et al. 5/2013 Shelton, IV et al.	2014/0001231 A1	1/2014	Shelton, IV et al.
2013/0116669 A1	5/2013 Shelton, IV et al.	2014/0001234 A1 2014/0001235 A1	1/2014 1/2014	Shelton, IV et al. Shelton, IV
2013/0119108 A1 2013/0123822 A1	5/2013 Altman et al. 5/2013 Wellman et al.	2014/0001236 A1	1/2014	Shelton, IV et al.
2013/0126581 A1	5/2013 Yates et al.	2014/0001237 A1 2014/0001238 A1	1/2014 1/2014	Shelton, IV et al. Shelton, IV et al.
2013/0126582 A1 2013/0146641 A1	5/2013 Shelton, IV et al. 6/2013 Shelton, IV et al.	2014/0001239 A1	1/2014	Shelton, IV et al.
2013/0146642 A1	6/2013 Shelton, IV et al.	2014/0001240 A1 2014/0005640 A1		Shelton, IV et al. Shelton, IV et al.
2013/0146643 A1 2013/0150832 A1	6/2013 Schmid et al. 6/2013 Belson et al.	2014/0005653 A1		Shelton, IV et al.
2013/0153634 A1	6/2013 Carter et al.	2014/0005661 A1 2014/0005662 A1	1/2014 1/2014	Shelton, IV et al. Shelton, IV
2013/0153636 A1 2013/0153641 A1	6/2013 Shelton, IV et al. 6/2013 Shelton, IV et al.	2014/0005676 A1	1/2014	Shelton, IV et al.
2013/0161374 A1	6/2013 Swayze et al.	2014/0005678 A1 2014/0005679 A1	1/2014 1/2014	Shelton, IV et al. Shelton, IV et al.
2013/0161375 A1 2013/0168435 A1	6/2013 Huitema et al. 7/2013 Huang et al.	2014/0005680 A1	1/2014	,
2013/0172929 A1	7/2013 Hess et al.	2014/0005693 A1 2014/0005694 A1	1/2014 1/2014	Shelton, IV et al. Shelton, IV et al.
2013/0175317 A1 2013/0175321 A1	7/2013 Yates et al. 7/2013 Shelton, IV et al.	2014/0005695 A1	1/2014	,
2013/0175322 A1	7/2013 Yates et al.	2014/0005702 A1	1/2014	Timm et al.
2013/0181033 A1 2013/0181034 A1	7/2013 Shelton, IV et al. 7/2013 Shelton, IV et al.	2014/0005708 A1 2014/0005718 A1	1/2014 1/2014	
2013/0184718 A1	7/2013 Smith et al.	2014/0008414 A1	1/2014	
2013/0184719 A1 2013/0186932 A1	7/2013 Shelton, IV et al. 7/2013 Shelton, IV et al.	2014/0014705 A1 2014/0042205 A1		Baxter, III Baxter, III et al.
2013/0186933 A1	7/2013 Shelton, IV et al.	2014/0048582 A1	2/2014	Shelton, IV et al.
2013/0186934 A1 2013/0186936 A1	7/2013 Shelton, IV et al. 7/2013 Shelton, IV	2014/0061279 A1 2014/0097227 A1		Laurent et al. Aronhalt et al.
2013/0190733 A1	7/2013 Giordano et al.	2014/0097227 A1 2014/0107640 A1		Yates et al.
2013/0190757 A1	7/2013 Yates et al.	2014/0128850 A1		Kerr et al.
2013/0193188 A1 2013/0193189 A1	8/2013 Shelton, IV et al. 8/2013 Swensgard et al.	2014/0151433 A1 2014/0151434 A1	6/2014	Shelton, IV et al. Shelton, IV et al.
2013/0197556 A1	8/2013 Shelton, IV et al.	2014/0166722 A1	6/2014	Hess et al.
2013/0200132 A1	8/2013 Moore et al.	2014/0166724 A1	6/2014	Schellin et al.

(56)	Referen	ices Cited		FOREIGN PA	ATENT DOCUME	NTS
IIS	PATENT	DOCUMENTS	AU	2012200178	B2 7/2013	
0.5.	. 1711111111	BOCOMENTO	CA			
2014/0166725 A1	6/2014	Schellin et al.	CA			
2014/0166726 A1	6/2014	Schellin et al.	CA			
2014/0171966 A1		Giordano et al.	CA			
2014/0175152 A1		Hess et al.	CN			
2014/0175154 A1		Shelton, IV et al.	CN			
2014/0175155 A1 2014/0175156 A1		Shelton, IV et al. Hess et al.	CN CN			
2014/01/3130 A1 2014/0191014 A1		Shelton, IV	CN			
2014/0191015 A1		Shelton, IV	CN			
2014/0197223 A1		Hess et al.	CN	101011286	A 8/2007	
2014/0205637 A1		Widenhouse et al.	CN			
2014/0207166 A1		Shelton, IV et al.	CN	101023879		
2014/0224686 A1		Aronhalt et al.	DE DE	273689 1775926		
2014/0224857 A1 2014/0236184 A1		Schmid Leimbach et al.	DE	3036217		
2014/0243865 A1		Swayze et al.	DE	3212828		
2014/0246471 A1		Jaworek et al.	DE	3210466		
2014/0246472 A1	9/2014	Kimsey et al.	DE	3709067		
2014/0246473 A1	9/2014	Auld	DE	9412228		
2014/0246474 A1		Hall et al.	DE	19509116		
2014/0246475 A1		Hall et al.	DE DE	19851291 19924311		
2014/0246476 A1		Hall et al.	DE	69328576		
2014/0246477 A1		Koch, Jr. et al.	DE	20016423		
2014/0246478 A1		Baber et al.	DE	10052679		
2014/0246479 A1 2014/0249557 A1		Baber et al. Koch, Jr. et al.	DE	20112837		
2014/0252066 A1		Shelton, IV et al.	DE	20121753		
2014/0252067 A1		Moore et al.	DE DE	10314072 202007003114		
2014/0252068 A1		Shelton, IV et al.	EP	0000756		
2014/0252069 A1		Moore et al.	EP	0122046		
2014/0259591 A1	9/2014	Shelton, IV et al.	EP	0070230		
2014/0263537 A1	9/2014	Leimbach et al.	EP	0156774	A2 10/1985	
2014/0263538 A1		Leimbach et al.	EP	0387980		
2014/0263539 A1		Leimbach et al.	EP	0033548		
2014/0263541 A1		Leimbach et al.	EP EP	0077262 0129442		
2014/0263542 A1		Leimbach et al.	EP	0276104		
2014/0263543 A1 2014/0263551 A1		Leimbach et al. Hall et al.	EP	0178940		
2014/0263551 A1 2014/0263552 A1		Hall et al.	EP	0178941		
2014/0263553 A1		Leimbach et al.	EP	0169044		
2014/0263554 A1		Leimbach et al.	EP	0248844		
2014/0263564 A1	9/2014	Leimbach et al.	EP EP	0539762 0545029		
2014/0263565 A1	9/2014	Lytle, IV et al.	EP	0277959		
2014/0263571 A1		Morgan et al.	EP	0233940		
2014/0263572 A1		Shelton, IV et al.	EP	0261230	B1 11/1993	
2014/0277017 A1		Leimbach et al.	EP	0639349		
2014/0284371 A1		Morgan et al.	EP	0324636		
2014/0284373 A1 2014/0291378 A1		Shelton, IV et al. Shelton, IV et al.	EP EP	0593920 0594148		
2014/0291378 A1 2014/0291379 A1		Schellin et al.	EP	0427949		
2014/0291379 A1 2014/0291380 A1		Weaner et al.	EP	0523174		
2014/0291381 A1		Weaner et al.	EP	0600182		
2014/0291382 A1		Lloyd et al.	EP	0310431		
2014/0291383 A1		Spivey et al.	EP	0375302		
2014/0296873 A1		Morgan et al.	EP EP	0376562 0630612		
2014/0296874 A1		Morgan et al.	EP	0634144		
2014/0299648 A1		Shelton, IV et al.	EP	0646356		
2014/0299649 A1		Shelton, IV et al.	EP	0646357		
2014/0303645 A1		Morgan et al.	EP	0505036		
2014/0303646 A1		Morgan et al. Hall et al.	EP	0653189		
2014/0305986 A1 2014/0305987 A1		Parihar et al.	EP EP	0669104		
2014/0305987 A1 2014/0305988 A1		Boudreaux et al.	EP EP	0511470 0674876		
2014/0305989 A1		Parihar et al.	EP	0679367		
2014/0305990 A1		Shelton, IV et al.	EP	0392547		
2014/0305991 A1		Parihar et al.	EP	0685204		
2014/0305992 A1		Kimsey et al.	EP	0364216	B1 1/1996	
2014/0305993 A1		Timm et al.	EP	0699418		
2014/0305994 A1		Parihar et al.	EP	0702937		
2014/0305995 A1		Shelton, IV et al.	EP	0705571		
2014/0309665 A1		Parihar et al.	EP	0711611		
2014/0309666 A1	10/2014	Shelton, IV et al.	EP	0484677	B2 6/1996	

(56)	References Cited	EP	1402837 A1	3/2004
	FOREIGN PATENT DOCUMENTS	EP EP	0705570 B1 0959784 B1	4/2004 4/2004
	TOREIGNTATENT DOCUMENTS	EP	1407719 A2	4/2004
EP	0541987 B1 7/1996	EP	1086713 B1	5/2004
EP	0667119 B1 7/1996	EP EP	0996378 B1 1426012 A1	6/2004 6/2004
EP EP	0737446 A1 10/1996 0748614 A1 12/1996	EP	0833593 B2	7/2004
EP	0708618 B1 3/1997	EP	1442694 A1	8/2004
EP	0770355 A1 5/1997	EP	0888749 B1	9/2004
EP EP	0503662 B1 6/1997 0447121 B1 7/1997	EP EP	0959786 B1 1459695 A1	9/2004 9/2004
EP	0621009 B1 7/1997	EP	1254636 B1	10/2004
EP	0625077 B1 7/1997	EP	1473819 A1	11/2004
EP EP	0633749 B1 8/1997 0710090 B1 8/1997	EP EP	1477119 A1 1479345 A1	11/2004 11/2004
EP EP	0710090 B1 8/1997 0578425 B1 9/1997	EP	1479347 A1	11/2004
EP	0625335 B1 11/1997	EP	1479348 A1	11/2004
EP EP	0552423 B1 1/1998 0592244 B1 1/1998	EP EP	0754437 B2 1025807 B1	12/2004 12/2004
EP EP	0392244 B1 1/1998 0648476 B1 1/1998	EP	1001710 B1	1/2005
EP	0649290 B1 3/1998	EP	1520521 A1	4/2005
EP	0598618 B1 9/1998 0676173 B1 9/1998	EP EP	1520522 A1 1520523 A1	4/2005 4/2005
EP EP	0676173 B1 9/1998 0678007 B1 9/1998	EP	1520525 A1	4/2005
EP	0869104 A1 10/1998	EP	1522264 A1	4/2005
EP	0603472 B1 11/1998	EP EP	1523942 A2 1550408 A1	4/2005 7/2005
EP EP	0605351 B1 11/1998 0878169 A1 11/1998	EP	1557129 A1	7/2005
EP	0879742 A1 11/1998	EP	1064883 B1	8/2005
EP	0695144 B1 12/1998	EP EP	1067876 B1 0870473 B1	8/2005 9/2005
EP EP	0722296 B1 12/1998 0760230 B1 2/1999	EP	1157666 B1	9/2005
EP	0623316 B1 3/1999	EP	0880338 B1	10/2005
EP	0650701 B1 3/1999	EP EP	1158917 B1 1344498 B1	11/2005 11/2005
EP EP	0537572 B1 6/1999 0923907 A1 6/1999	EP	0906764 B1	12/2005
EP	0640317 A1 9/1999	EP	1330989 B1	12/2005
EP	0843906 B1 3/2000	EP EP	0771176 B2 1621138 A2	1/2006 2/2006
EP EP	0552050 B1 5/2000 0833592 B1 5/2000	EP	1621139 A2	2/2006
EP	0832605 B1 6/2000	EP	1621141 A2	2/2006
EP	0830094 B1 9/2000	EP EP	1621145 A2 1621151 A2	2/2006 2/2006
EP EP	1034747 A1 9/2000 1034748 A1 9/2000	EP	1034746 B1	3/2006
EP	0694290 B1 11/2000	EP	1201196 B1	3/2006
EP	1050278 A1 11/2000	EP EP	1632191 A2 1647231 A1	3/2006 4/2006
EP EP	1053719 A1 11/2000 1053720 A1 11/2000	EP	1047231 R1 1065981 B1	5/2006
EP	1055399 A1 11/2000	EP	1082944 B1	5/2006
EP	1055400 A1 11/2000	EP EP	1230899 B1 1652481 A2	5/2006 5/2006
EP EP	1080694 A1 3/2001 1090592 A1 4/2001	EP	1382303 B1	6/2006
EP	1095627 A1 5/2001	EP	1253866 B1	7/2006
EP	1256318 B1 5/2001	EP EP	1032318 B1 1045672 B1	8/2006 8/2006
EP EP	0806914 B1 9/2001 0768840 B1 12/2001	EP	1617768 B1	8/2006
EP	0908152 B1 1/2002	EP	1693015 A2	8/2006
EP	0872213 B1 5/2002	EP EP	1400214 B1 1702567 A2	9/2006 9/2006
EP EP	0862386 B1 6/2002 0949886 B1 9/2002	EP	1129665 B1	11/2006
EP	1238634 A2 9/2002	EP	1400206 B1	11/2006
EP	0858295 B1 12/2002	EP EP	1721568 A1 1256317 B1	11/2006 12/2006
EP EP	0656188 B1 1/2003 0717960 B1 2/2003	EP	1285633 B1	12/2006
EP	1284120 A1 2/2003	EP	1728473 A1	12/2006
EP	1287788 A1 3/2003	EP EP	1728475 A2 1736105 A1	12/2006 12/2006
EP EP	0717966 B1 4/2003 0869742 B1 5/2003	EP	1011494 B1	1/2007
EP	0829235 B1 6/2003	EP	1479346 B1	1/2007
EP	0887046 B1 7/2003	EP EP	1484024 B1 1749485 A1	1/2007 2/2007
EP EP	0852480 B1	EP EP	1749485 A1 1754445 A2	2/2007 2/2007
EP	0813843 B1 10/2003	EP	1759812 A1	3/2007
EP	0873089 B1 10/2003	EP	1767157 A1	3/2007
EP	0856326 B1 11/2003	EP	1767163 A1	3/2007
EP EP	1374788 A1 1/2004 0741996 B1 2/2004	EP EP	1769756 A1 1769758 A1	4/2007 4/2007
EP	0814712 B1 2/2004	EP	1581128 B1	5/2007

(56)	References Cited	EP	2098170 A2	9/2009
	FOREIGN PATENT DOCUMENTS	EP EP	2110082 A1 2111803 A2	10/2009 10/2009
		EP	1762190 B8	11/2009
EP	1780825 A1 5/2007	EP EP	1813208 B1 1908426 B1	11/2009 11/2009
EP EP	1785097 A2 5/2007 1790293 A2 5/2007	EP	2116195 A1	11/2009
EP	1790294 A1 5/2007	EP	1607050 B1	12/2009
EP	1563793 B1 6/2007	EP EP	1815804 B1 1875870 B1	12/2009 12/2009
EP EP	1800610 A1 6/2007 1300117 B1 8/2007	EP	1878395 B1	1/2010
EP	1813199 A1 8/2007	\mathbf{EP}	2151204 A1	2/2010
EP	1813200 A2 8/2007	EP EP	2165656 A2 2165660 A2	3/2010 3/2010
EP EP	1813201 A1	EP	1566150 B1	4/2010
EP	1813203 A2 8/2007	EP	1813206 B1	4/2010
EP	1813207 A1 8/2007	EP EP	1769754 B1 1854416 B1	6/2010 6/2010
EP EP	1813209 A1 8/2007 1330991 B1 9/2007	EP	2198787 A1	6/2010
EP	1837041 A1 9/2007	EP	1647286 B1	9/2010
EP	0922435 B1 10/2007	EP EP	1825821 B1 1535565 B1	9/2010 10/2010
EP EP	1487359 B1 10/2007 1599146 B1 10/2007	EP	1702570 B1	10/2010
EP	1839596 A1 10/2007	EP	1785098 B1	10/2010
EP EP	2110083 A2 10/2007 1679096 B1 11/2007	EP EP	2005896 B1 2030578 B1	10/2010 11/2010
EP	1857057 A2 11/2007	EP	2036505 B1	11/2010
EP	1402821 B1 12/2007	EP EP	2245993 A2	11/2010
EP EP	1872727 A1 1/2008 1550410 B1 2/2008	EP	1627605 B1 2027811 B1	12/2010 12/2010
EP	1671593 B1 2/2008	EP	2130498 B1	12/2010
EP	1897502 A1 3/2008	EP EP	1994890 B1 2005900 B1	1/2011
EP EP	1611856 B1 4/2008 1908417 A2 4/2008	EP	2003900 B1 2286738 A2	1/2011 2/2011
EP	1330201 B1 6/2008	EP	1690502 B1	3/2011
EP	1702568 B1 7/2008	EP EP	2292153 A1 1769755 B1	3/2011 4/2011
EP EP	1943955 A2 7/2008 1943957 A2 7/2008	EP	2090240 B1	4/2011
EP	1943959 A1 7/2008	EP	2305135 A1	4/2011
EP	1943962 A2 7/2008	EP EP	2314254 A2 1813205 B1	4/2011 6/2011
EP EP	1943964 A1 7/2008 1943976 A2 7/2008	EP	2090243 B1	6/2011
EP	1593337 B1 8/2008	EP EP	2329773 A1 2353545 A1	6/2011 8/2011
EP EP	1970014 A1 9/2008 1980213 A2 10/2008	EP	2361562 A1	8/2011
EP	1759645 B1 11/2008	EP	1836986 B1	11/2011
EP	1990014 A2 11/2008	EP EP	1908414 B1 2153781 B1	11/2011 11/2011
EP EP	1552795 B1 12/2008 1693008 B1 12/2008	EP	2389928 A2	11/2011
EP	1759640 B1 12/2008	EP EP	1847225 B1	12/2011
EP EP	1997439 A2 12/2008 2000102 A2 12/2008	EP	2399538 A2 1785102 B1	12/2011 1/2012
EP	2005894 A2 12/2008	\mathbf{EP}	2090253 B1	3/2012
EP	2005901 A1 12/2008	EP EP	2430986 A2 2457519 A1	3/2012 5/2012
EP EP	2008595 A2 12/2008 1736104 B1 3/2009	EP	2462880 A2	6/2012
EP	1749486 B1 3/2009	EP	1813204 B1	7/2012
EP	1782743 B1 3/2009	EP EP	2189121 B1 2005895 B1	7/2012 8/2012
EP EP	2039302 A2 3/2009 2039308 A2 3/2009	EP	2090248 B1	8/2012
EP	2039316 A2 3/2009	EP	2481359 A1	8/2012
EP EP	1721576 B1 4/2009 1733686 B1 4/2009	EP EP	1935351 B1 2497431 A1	9/2012 9/2012
EP	2044890 A1 4/2009	EP	1616549 B1	10/2012
EP	1550409 B1 6/2009	EP EP	2030579 B1 2090252 B1	10/2012 10/2012
EP EP	1550413 B1 6/2009 1719461 B1 6/2009	EP	2517637 A1	10/2012
EP	1834594 B1 6/2009	EP	2517638 A1	10/2012
EP	1709911 B1 7/2009	EP EP	2517642 A2 2517645 A2	10/2012 10/2012
EP EP	2077093 A2 7/2009 1745748 B1 8/2009	EP	2517649 A2	10/2012
EP	2090231 A1 8/2009	EP	2517651 A2	10/2012
EP EP	2090237 A1 8/2009 2090241 A1 8/2009	EP EP	1884206 B1 2090238 B1	3/2013 4/2013
EP	2090241 A1 8/2009 2090244 A2 8/2009	EP	1982657 B1	7/2013
EP	2090245 A1 8/2009	EP	2090234 B1	9/2013
EP EP	2090254 A1 8/2009 2090256 A2 8/2009	EP EP	2633830 A1 2644124 A1	9/2013 10/2013
EP EP	2090256 A2 8/2009 2095777 A2 9/2009	EP EP	2644209 A2	10/2013
	2020111 122 27200			

(56)	References Cited	$\overline{ m JP}$	2003-164066	6/2003
	FOREIGN PATENT DOCUMENTS	ЈР ЈР	2003-521301 A 2004-162035 A	7/2003 6/2004
	FOREIGN FATENT DOCUMENTS	JP	2004-229976 A	8/2004
EP	2700367 A1 2/2014	JP	2004-524076 A	8/2004
EP	1772105 B1 5/2014	ЈР ЈР	2004-531280 A 2004-532084 A	10/2004 10/2004
ES FR	2396594 T3	JP	2004-532676 A	10/2004
FR	999646 A 2/1952	JP	2004-329624 A	11/2004
FR	1112936 A 3/1956	JP	2004-337617 A	12/2004
FR	2598905 A1 11/1987	JР JP	2004-344663 2005-028147 A	12/2004 2/2005
FR FR	2765794 A 1/1999 2815842 10/2000	JP	2005-28148 A	2/2005
GB	939929 A 10/1963	JP	2005-028149 A	2/2005
GB	1210522 A 10/1970	JP	2005-505309 A	2/2005
GB	1217159 A 12/1970	ЈР ЈР	2005505322 T 2005-103280 A	2/2005 4/2005
GB GB	1339394 A 12/1973 2024012 A 1/1980	JP	2005-103281 A	4/2005
GB	2109241 A 6/1983	JP.	2005-511131 A	4/2005
GB	2272159 A 5/1994	ЈР ЈР	2005103293 A 2005131163 A	4/2005 5/2005
GB GB	2284242 A 5/1995 2336214 A 10/1999	JP	2005131163 A 2005131164 A	5/2005
GB	2425903 A 11/2006	JP	2005131173 A	5/2005
GR	93100110 A 11/1993	ЈР ЈР	2005131211 A	5/2005 5/2005
JР	50-33988 U 4/1975 S 58500053 A 1/1983	JР	2005131212 A 2005-137919 A	6/2005
JP JP	S 58500053 A 1/1983 60-100955 A 6/1985	JP	2005-144183 A	6/2005
JР	61-98249 A 5/1986	JР	2005-516714 A	6/2005
JP	S 61502036 A 9/1986	ЈР ЈР	2005137423 A 2005152416 A	6/2005 6/2005
JP JP	S 63-59764 A 3/1988 63-203149 8/1988	JP	2005152410 A 2005-521109 A	7/2005
JP	H 02-279149 A 11/1990	JP	2005-523105 A	8/2005
JP	3-12126 A 1/1991	JP	4461008 B2	8/2005
JP	H 05-084252 A 4/1993	ЈР ЈР	2005524474 A 2005-296412 A	8/2005 10/2005
JP JP	5-212039 A 8/1993 6007357 A 1/1994	JP	2005-250412 A 2005-328882 A	12/2005
JP	H 6-30945 A 2/1994	JP	2005-335432 A	12/2005
JP	H 06-26812 U 4/1994	JP	2005-342267 A	12/2005
JP JP	H 6-121798 A 5/1994	ЈР ЈР	2006-034975 A 2006-34977 A	2/2006 2/2006
JP JP	H 06-197901 A 7/1994 H 06-237937 A 8/1994	JP	2006-034978 A	2/2006
JP	7-31623 A 2/1995	JP	2006-034980 A	2/2006
JP	7051273 A 2/1995	ЈР ЈР	2006-506106 A 2006-187649 A	2/2006 7/2006
JP JP	7-124166 A 5/1995 H 7-163574 A 6/1995	JP	2006-218297 A	8/2006
JР	07-171163 7/1995	$\overline{\mathrm{JP}}$	2006-223872 A	8/2006
JP	7-255735 A 10/1995	ЈР ЈР	2006-281405 A 2006-334417 A	10/2006 12/2006
JP JP	H 7-285089 A 10/1995 8-33642 A 2/1996	JP	2006-346445 A	12/2006
JP	8033641 A 2/1996	JP	2007-61628 A	3/2007
JP	8-164141 A 6/1996	JP	2007-098130 A	4/2007
JP	H 08-182684 A 7/1996	ЈР ЈР	2007-105481 A 3906843 B2	4/2007 4/2007
JP JP	H 08-507708 A 8/1996 8229050 A 9/1996	JP	2007-117725 A	5/2007
JР	H 09-501081 A 2/1997	JP	2007-130471 A	5/2007
JP	H 09-501577 A 2/1997	ЈР ЈР	2007-222615 A 2007-203051 A	6/2007 8/2007
JP JP	H 09-164144 A 6/1997 H 10-118090 A 5/1998	JP	2007-203051 A 2007-203057 A	8/2007
JP	S 63-147449 A 6/1998	JP	2007-524435 A	8/2007
JP	10-512469 A 12/1998	JP	2007-229448 A	9/2007
JP	2000-14632 1/2000	ЈР ЈР	4001860 B2 2007-325922 A	10/2007 12/2007
JP JP	2000033071 A 2/2000 2000-112002 A 4/2000	JP	2008-68073 A	3/2008
JP	2000-166932 A 6/2000	ID.	2008-206967 A	9/2008
JP	2000171730 A 6/2000	ЈР ЈР	2008-212637 A 2008-212638 A	9/2008 9/2008
JP JP	2000287987 A 10/2000 2000325303 A 11/2000	JP	2008-212038 A 2008-259860 A	10/2008
JP	2001-046384 A 2/2001	JP	2008-264535 A	11/2008
JP	2001-87272 A 4/2001	JР	2008-283459 A	11/2008
JP	2001-514541 A 9/2001	ЈР ЈР	2009-502351 A 2009-506799 A	1/2009 2/2009
JP JP	2001-517473 A 10/2001 2001286477 A 10/2001	JР	2009-300799 A 2009-72599 A	4/2009
JP	2002-51974 A 2/2002	JP	2009-106752 A	5/2009
JP	2002143078 A 5/2002	JP	2009-189836 A	8/2009
JР	2002-528161 A 9/2002	JР	2009-539420 A	11/2009
JP JP	2002369820 A 12/2002 2003-500153 A 1/2003	ЛР ЛР	2010-098844 A 4549018 B2	4/2010 9/2010
JP	2003-500133 A 1/2003 2003-504104 A 2/2003	JР	4783373 B2	7/2011
JP	2003-135473 A 5/2003	JР	5140421 B2	2/2013

(56)	References Cited	WO	WO 96/31155 A1	10/1996
()		WO	WO 96/35464 A1	11/1996
	FOREIGN PATENT DOCUMENTS	WO	WO 96/39085 A1	12/1996
		WO	WO 96/39086 A1	12/1996
JP	5162595 B2 3/2013	WO	WO 96/39087 A1	12/1996
JP	2013-128791 A 7/2013	WO	WO 96/39088 A1	12/1996
JР	5333899 B2 11/2013	WO	WO 96/39089 A1	12/1996
RU	1814161 A1 5/1993	WO	WO 97/00646 A1	1/1997
RU	2008830 C1 3/1994	WO	WO 97/00647 A1	1/1997
RU	2052979 C1 1/1996	WO WO	WO 97/01989 A1	1/1997
RU	2098025 C1 12/1997	WO	WO 97/06582 A1 WO 97/10763 A1	2/1997 3/1997
RU	2141279 C1 11/1999	WO	WO 97/10764 A1	3/1997
RU	2144791 C1 1/2000	wo	WO 97/11648 A2	4/1997
RU	2181566 C2 4/2002	WO	WO 97/11649 A1	4/1997
RU RU	2187249 C2 8/2002 2189091 C2 9/2002	WO	WO 97/15237 A1	5/1997
RU	32984 U1 10/2003	WO	WO 97/24073 A1	7/1997
RU	2225170 C2 3/2004	WO	WO 97/24993 A1	7/1997
RU	42750 U1 12/2004	WO	WO 97/30644 A1	8/1997
RU	61114 U1 2/2007	WO	WO 97/34533 A1	9/1997
SU	189517 A 1/1967	WO	WO 97/37598 A1	10/1997
SU	328636 A 9/1972	WO	WO 97/39688 A2	10/1997
su	674747 A1 7/1979	WO	WO 98/01080 A1	1/1998
su	886900 A1 12/1981	WO WO	WO 98/17180 A1	4/1998
SU	1009439 A 4/1983	WO	WO 98/27880 A1 WO 98/30153 A1	7/1998 7/1998
SU	1022703 A1 6/1983	WO	WO 98/47436 A1	10/1998
SU	1333319 A2 8/1987 1377053 A1 2/1988	wo	WO 99/03407 A1	1/1999
SU SU	1377053 A1 2/1988 1509051 A1 9/1989	WO	WO 99/03408 A1	1/1999
SU	1561964 A1 5/1990	WO	WO 99/03409 A1	1/1999
SU	1708312 A1 1/1992	WO	WO 99/12483 A1	3/1999
SU	1722476 A1 3/1992	WO	WO 99/12487 A1	3/1999
SU	1752361 A1 8/1992	WO	WO 99/12488 A1	3/1999
WO	WO 82/02824 A1 9/1982	WO	WO 99/15086 A1	4/1999
WO	WO 86/02254 A1 4/1986	WO	WO 99/15091 A1	4/1999
WO	WO 91/15157 A1 10/1991	WO	WO 99/23933 A2	5/1999
WO	WO 92/20295 A1 11/1992	WO	WO 99/23959 A1	5/1999
WO	WO 92/21300 A1 12/1992	WO	WO 99/25261 A1	5/1999
WO	WO 93/08755 A1 5/1993	WO WO	WO 99/29244 A1 WO 99/34744 A1	6/1999 7/1999
WO	WO 93/13718 A1 7/1993	WO	WO 99/34/44 A1 WO 99/45849 A1	9/1999
WO	WO 93/14690 A1 8/1993	WO	WO 99/48430 A1	9/1999
WO	WO 93/15648 A1 8/1993	WO	WO 99/51158 A1	10/1999
WO WO	WO 93/15850 A1 8/1993 WO 93/19681 A1 10/1993	WO	WO 00/24322 A1	5/2000
WO	WO 94/00060 A1 1/1994	WO	WO 00/24330 A1	5/2000
WO	WO 94/11057 A1 5/1994	WO	WO 00/41638 A1	7/2000
WO	WO 94/12108 A1 6/1994	WO	WO 00/48506 A1	8/2000
WO	WO 94/18893 A1 9/1994	WO	WO 00/53112 A2	9/2000
WO	WO 94/20030 A1 9/1994	WO	WO 00/54653 A1	9/2000
WO	WO 94/22378 A1 10/1994	WO	WO 00/57796 A1	10/2000
WO	WO 94/23659 A1 10/1994	WO	WO 00/64365 A1	11/2000
WO	WO 94/24943 A1 11/1994	WO WO	WO 00/72762 A1 WO 00/72765 A1	12/2000 12/2000
WO	WO 94/24947 A1 11/1994	WO	WO 00/72703 A1 WO 01/03587 A1	1/2001
WO	WO 95/02369 A1 1/1995	WO	WO 01/05702 A1	1/2001
WO	WO 95/03743 A1 2/1995	wo	WO 01/10482 A1	2/2001
WO WO	WO 95/06817 A1 3/1995 WO 95/09576 A1 4/1995	WO	WO 01/35845 A1	5/2001
WO	WO 95/09576 A1 4/1995 WO 95/09577 A1 4/1995	WO	WO 01/54594 A1	8/2001
WO	WO 95/14436 A1 6/1995	WO	WO 01/58371 A1	8/2001
WO	WO 95/17855 A1 7/1995	WO	WO 01/62158 A2	8/2001
WO	WO 95/18383 A1 7/1995	WO	WO 01/62161 A1	8/2001
WO	WO 95/18572 A1 7/1995	WO	WO 01/62162 A1	8/2001
WO	WO 95/19739 A1 7/1995	WO	WO 01/62164 A2	8/2001
WO	WO 95/20360 A1 8/1995	WO	WO 01/62169 A2	8/2001
WO	WO 95/23557 A1 9/1995	WO	WO 01/78605 A2	10/2001
WO	WO 95/24865 A1 9/1995	WO WO	WO 01/80757 A2 WO 01/91646 A1	11/2001 12/2001
WO	WO 95/25471 A3 9/1995	WO	WO 02/00121 A1	1/2001
WO	WO 95/26562 A1 10/1995	WO	WO 02/00121 A1 WO 02/07608 A2	1/2002
WO	WO 95/29639 A1 11/1995 WO 96/04858 A1 2/1996	WO	WO 02/07618 A1	1/2002
WO WO	WO 96/04858 A1 2/1996 WO 96/18344 A2 6/1996	wo	WO 02/07018 A1 WO 02/17799 A1	3/2002
WO	WO 96/19151 A1 6/1996	WO	WO 02/17/99 A1 WO 02/19920 A1	3/2002
WO	WO 96/19151 A1 6/1996 WO 96/19152 A1 6/1996	WO	WO 02/19932 A1	3/2002
WO	WO 96/20652 A1 7/1996	WO	WO 02/26143 A1	4/2002
wo	WO 96/21119 A1 7/1996	wo	WO 02/30297 A2	4/2002
WO	WO 96/22055 A1 7/1996	wo	WO 02/30237 A2	4/2002
WO	WO 96/23448 A1 8/1996	WO	WO 02/36028 A1	5/2002
WO	WO 96/24301 A1 8/1996	WO	WO 02/43571 A2	6/2002
WO	WO 96/27337 A1 9/1996	WO	WO 02/058568 A1	8/2002
•				•

(56)	Referen	ces Cited	WO	WO 2005/096954 A2	10/2005
			WO	WO 2005/112806 A2	12/2005
	FOREIGN PATE	NT DOCUMENTS	WO	WO 2005/112808 A1	12/2005
WO	H/O 02/0/0220 A1	0/2002	WO	WO 2005/115251 A1	12/2005
WO WO	WO 02/060328 A1 WO 02/067785 A2	8/2002 9/2002	WO WO	WO 2005/115253 A2	12/2005
WO	WO 02/007783 A2 WO 02/085218 A2	10/2002	WO	WO 2005/117735 A1 WO 2005/122936 A1	12/2005 12/2005
WO	WO 02/087586 A1	11/2002	WO	WO 2006/023486 A1	3/2006
WO	WO 02/098302 A1	12/2002	wo	WO 2006/023578 A2	3/2006
WO	WO 03/000138 A2	1/2003	WO	WO 2006/027014 A1	3/2006
WO	WO 03/001329 A2	1/2003	WO	WO 2006/028314 A1	3/2006
WO	WO 03/001986 A2	1/2003	WO	WO 2006/044490 A2	4/2006
WO WO	WO 03/013363 A1 WO 03/013372 A2	2/2003 2/2003	WO	WO 2006/044581 A2	4/2006
WO	WO 03/015604 A2	2/2003	WO	WO 2006/044810 A2	4/2006
WO	WO 03/020106 A2	3/2003	WO	WO 2006/051252 A1	5/2006
WO	WO 03/020139 A2	3/2003	WO	WO 2006/059067 A1	6/2006
WO	WO 03/024339 A1	3/2003	WO WO	WO 2006/083748 A1 WO 2006/092563 A1	8/2006 9/2006
WO WO	WO 03/079909 A3 WO 03/030743 A2	3/2003 4/2003	WO	WO 2006/092565 A1	9/2006
WO	WO 03/030743 A2 WO 03/037193 A1	5/2003	WO	WO 2006/115958 A1	11/2006
WO	WO 03/047436 A3	6/2003	WO	WO 2006/125940 A1	11/2006
WO	WO 03/055402 A1	7/2003	WO	WO 2006/132992 A2	12/2006
WO	WO 03/057048 A1	7/2003	WO	WO 2007/002180 A2	1/2007
WO	WO 03/057058 A1	7/2003	WO	WO 2007/016290 A2	2/2007
WO WO	WO 03/063694 A1 WO 03/077769 A1	8/2003	WO	WO 2007/018898 A2	2/2007
WO	WO 03/07/709 A1 WO 03/079911 A1	9/2003 10/2003	WO	WO 2007/089603 A2	8/2007
WO	WO 03/082126 A1	10/2003	WO WO	WO 2007/098220 A2 WO 2007/121579 A1	8/2007 11/2007
WO	WO 03/086206 A1	10/2003	WO	WO 2007/131110 A2	11/2007
WO	WO 03/088845 A2	10/2003	wo	WO 2007/137110 A2 WO 2007/137304 A2	11/2007
WO	WO 03/090630 A2	11/2003	WO	WO 2007/139734 A2	12/2007
WO WO	WO 03/094743 A1 WO 03/094745 A1	11/2003 11/2003	WO	WO 2007/142625 A2	12/2007
WO	WO 03/094745 A1 WO 03/094746 A1	11/2003	WO	WO 2007/145825 A2	12/2007
WO	WO 03/094747 A1	11/2003	WO	WO 2007/146987 A2	12/2007
WO	WO 03/101313 A1	12/2003	WO	WO 2007/147439 A1	12/2007
WO	WO 03/105698 A2	12/2003	WO	WO 2008/020964 A2	2/2008
WO WO	WO 03/105702 A2	12/2003	WO	WO 2008/021969 A2	2/2008
WO	WO 2004/006980 A2 WO 2004/011037 A2	1/2004 2/2004	WO WO	WO 2008/039249 A1	4/2008
wo	WO 2004/011037 A2 WO 2004/019769 A1	3/2004	WO	WO 2008/039270 A1 WO 2008/045383 A2	4/2008 4/2008
WO	WO 2004/019803 A1	3/2004	WO	WO 2008/057281 A2	5/2008
WO	WO 2004/021868 A2	3/2004	WO	WO 2008/070763 A1	6/2008
WO	WO 2004/028585 A2	4/2004	WO	WO 2008/089404 A2	7/2008
WO WO	WO 2004/030554 A1 WO 2004/032754 A2	4/2004 4/2004	WO	WO 2008/101080 A1	8/2008
wo	WO 2004/032760 A2	4/2004	WO	WO 2008/101228 A2	8/2008
WO	WO 2004/032762 A1	4/2004	WO	WO 2008/109125 A1	9/2008
WO	WO 2004/032763 A2	4/2004	WO	WO 2008/124748 A1	10/2008
WO	WO 2004/032783 A1	4/2004	WO	WO 2009/023851 A1	2/2009
WO WO	WO 2004/034875 A2 WO 2004/047626 A1	4/2004 6/2004	WO	WO 2009/033057 A2	3/2009
WO	WO 2004/047653 A2	6/2004	WO	WO 2009/046394 A1	4/2009
WO	WO 2004/049956 A2	6/2004	WO	WO 2009/067649 A2	5/2009
WO	WO 2004/052426 A2	6/2004	WO	WO 2009/091497 A2	7/2009
WO	WO 2004/056276 A1	7/2004	WO	WO 2009/137761 A2	11/2009
WO WO	WO 2004/056277 A1 WO 2004/062516 A1	7/2004 7/2004	WO	WO 2009/143092 A1	11/2009
wo	WO 2004/002310 A1 WO 2004/064600 A2	8/2004	WO WO	WO 2009/143331 A1 WO 2010/028332 A2	11/2009 3/2010
WO	WO 2004/078050 A2	9/2004	WO	WO 2010/028332 A2 WO 2010/030434 A1	3/2010
WO	WO 2004/078051 A2	9/2004	WO	WO 2010/050771 A2	5/2010
WO	WO 2004/078236 A2	9/2004	wo	WO 2010/054404 A1	5/2010
WO WO	WO 2004/086987 A1 WO 2004/096015 A2	10/2004 11/2004	WO	WO 2010/063795 A1	6/2010
wo	WO 2004/096013 A2 WO 2004/096057 A2	11/2004	WO	WO 2010/098871 A2	9/2010
wo	WO 2004/103157 A2	12/2004	WO	WO 2011/008672 A2	1/2011
WO	WO 2004/105593 A1	12/2004	WO	WO 2011/044343 A2	4/2011
WO	WO 2004/105621 A1	12/2004	WO	WO 2011/060311 A2	5/2011
WO WO	WO 2004/112618 A2	12/2004	WO	WO 2012/021671 A1	2/2012
WO	WO 2004/112652 A2 WO 2005/027983 A2	12/2004 3/2005	WO	WO 2012/044551 A1	4/2012
WO	WO 2005/027983 A2 WO 2005/037329 A2	4/2005	WO	WO 2012/044554 A1	4/2012
WO	WO 2005/042041 A1	5/2005	WO	WO 2012/044606 A2	4/2012
WO	WO 2005/044078 A2	5/2005	WO	WO 2012/044820 A1	4/2012
WO	WO 2005/055846 A1	6/2005	WO	WO 2012/044844 A2	4/2012
WO	WO 2005/072634 A2	8/2005	WO	WO 2012/044853 A1	4/2012
WO	WO 2005/078892 A1	8/2005	WO	WO 2012/068156 A2	5/2012
WO	WO 2005/079675 A2	9/2005	WO	WO 2012/148667 A2	11/2012

(56)References Cited

FOREIGN PATENT DOCUMENTS

WO 2012/148703 A2 WO 11/2012 WO 2013/043707 A2 WO 3/2013 WO WO 2013/043717 A1 3/2013

OTHER PUBLICATIONS

U.S. Appl. No. 14/521,748, filed Oct. 23, 2014.

European Search Report, Application No. 09250367.1, dated Apr. 14, 2009 (7 pages).

European Examination Report, Application No. 09250367.1, dated Mar. 4, 2010 (8 pages).

International Search Report for PCT/US2012/039302, dated Sep. 4, 2012 (5 pages).

Disclosed Anonymously, "Motor-Driven Surgical Stapler Improvements," Research Disclosure Database No. 526041, Published: Feb.

C.C. Thompson et al., "Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain," Surg Endosc (2006) vol. 20, pp. 1744-1748.

B.R. Coolman, DVM, MS et al., "Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs," Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.

7539?cookieSet=1&journalCode=vsu which redirects to http:// www3.interscience.wiley.com/journal/119040681/

abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).

The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages.

"Biomedical Coatings," Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1

Van Meer et al., "A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools," LAAS/CNRS (Aug. 2005).

Breedveld et al., "A New, Easily Miniaturized Sterrable Endoscope," IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).

D. Tuite, Ed., "Get the Lowdown on Ultracapacitors," Nov. 15, 2007; URL: http://electronicdesign.com/Articles/Print. [online] cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).

Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.

ASTM procedure D2240-00, "Standard Test Method for Rubber Property—Durometer Hardness," (Published Aug. 2000).

ASTM procedure D2240-05, "Standard Test Method for Rubber Property—Durometer Hardness," (Published Apr. 2010).

Covidien Brochure, "Endo GIATM Reloads with Tri-StapleTM Technology," (2010), 1 page.

Covidien Brochure, "Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers," (2010), 2 pages. Covidien Brochure, "Endo GIA™ Black Reload with Tri-Staple™ Technology," (2012), 2 pages.

Covidien Brochure, "Endo GIATM Curved Tip Reload with Tri-Staple™ Technology," (2012), 2 pages.

Covidien Brochure, "Endo GIA™ Reloads with Tri-Staple™ Technology," (2010), 2 pages.

Covidien Brochure, "Endo GIATM Ultra Universal Stapler," (2010), 2

Miyata et al., "Biomolecule-Sensitive Hydrogels," Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.

Jeong et al., "Thermosensitive Sol-Gel Reversible Hydrogels," Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.

Byrne et al., "Molecular Imprinting Within Hydrogels," Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.

Qiu et al., "Environment-Sensitive Hydrogels for Drug Delivery," Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.

Hoffman, "Hydrogels for Biomedical Applications," Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.

Hoffman, "Hydrogels for Biomedical Applications," Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.

Peppas, "Physiologically Responsive Hydrogels," Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.

Ebara, "Carbohydrate-Derived Hydrogels and Microgels," Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.

Peppas, Editor "Hydrogels in Medicine and Pharmacy," vol. I, Fundamentals, CRC Press, 1986.

Matsuda, "Thermodynamics of Formation of Porous Polymeric Membrane from Solutions," Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).

Young, "Microcellular foams via phase separation," Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986)

Chen et al., "Elastomeric Biomaterials for Tissue Engineering," Progress in Polymer Science 38 (2013), pp. 584-671

Pitt et al., "Attachment of Hyaluronan to Metallic Surfaces," J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.

Schellhammer et al., "Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae," Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).

Solorio et al., "Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors," J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.

U.S. Appl. No. 14/187,383, filed Feb. 24, 2014.

U.S. Appl. No. 14/187,386, filed Feb. 24, 2014.

U.S. Appl. No. 14/187,390, filed Feb. 24, 2014.

U.S. Appl. No. 14/187,385, filed Feb. 24, 2014.

U.S. Appl. No. 14/187,384, filed Feb. 24, 2014. U.S. Appl. No. 14/187,389, filed Feb. 24, 2014.

U.S. Appl. No. 14/275,232, filed May 12, 2014.

U.S. Appl. No. 14/311,976, filed Jun. 23, 2014. U.S. Appl. No. 14/498,070, filed Sep. 26, 2014.

U.S. Appl. No. 14/498,087, filed Sep. 26, 2014.

U.S. Appl. No. 14/498,105, filed Sep. 26, 2014.

U.S. Appl. No. 14/498,107, filed Sep. 26, 2014. U.S. Appl. No. 14/498,121, filed Sep. 26, 2014.

U.S. Appl. No. 14/498,145, filed Sep. 26, 2014.

U.S. Appl. No. 14/318,996, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,006, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,014, filed Jun. 30, 2014.

U.S. Appl. No. 14/318,991, filed Jun. 30, 2014. U.S. Appl. No. 14/319,004, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,008, filed Jun. 30, 2014.

U.S. Appl. No. 14/318,997, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,002, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,013, filed Jun. 30, 2014.

U.S. Appl. No. 14/319,016, filed Jun. 30, 2014.

U.S. Appl. No. 13/974,166, filed Aug. 23, 2013. U.S. Appl. No. 14/138,481, filed Dec. 23, 2013.

U.S. Appl. No. 13/974,215, filed Aug. 23, 2013.

U.S. Appl. No. 13/974,202, filed Aug. 23, 2013.

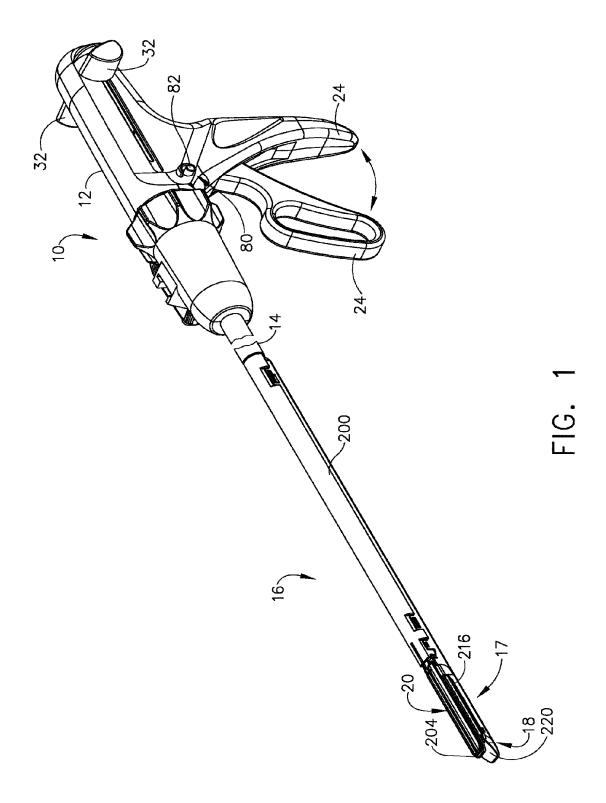
U.S. Appl. No. 13/974,205, filed Aug. 23, 2013.

U.S. Appl. No. 13/974,224, filed Aug. 23, 2013. U.S. Appl. No. 13/974,169, filed Aug. 23, 2013.

U.S. Appl. No. 13/974,206, filed Aug. 23, 2013.

U.S. Appl. No. 13/974,227, filed Aug. 23, 2013.

U.S. Appl. No. 13/974,174, filed Aug. 23, 2013.

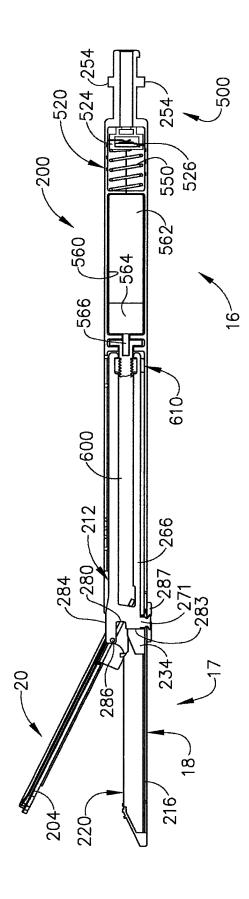
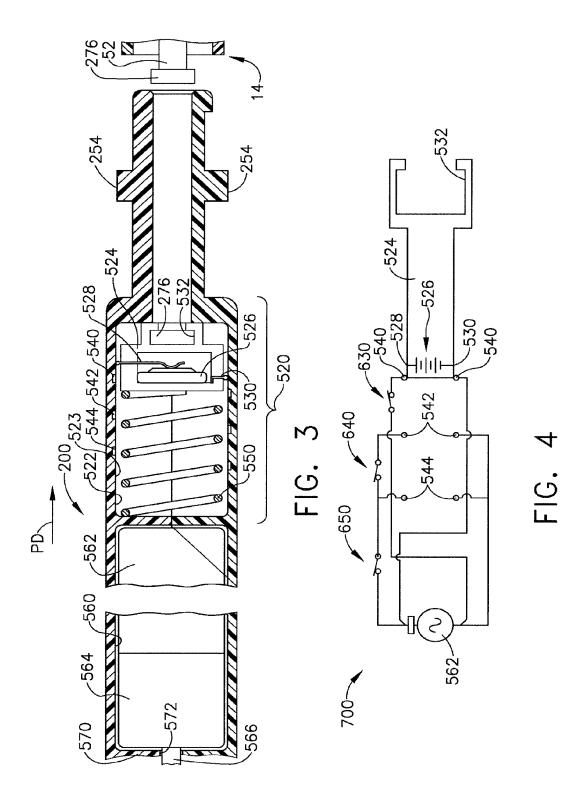
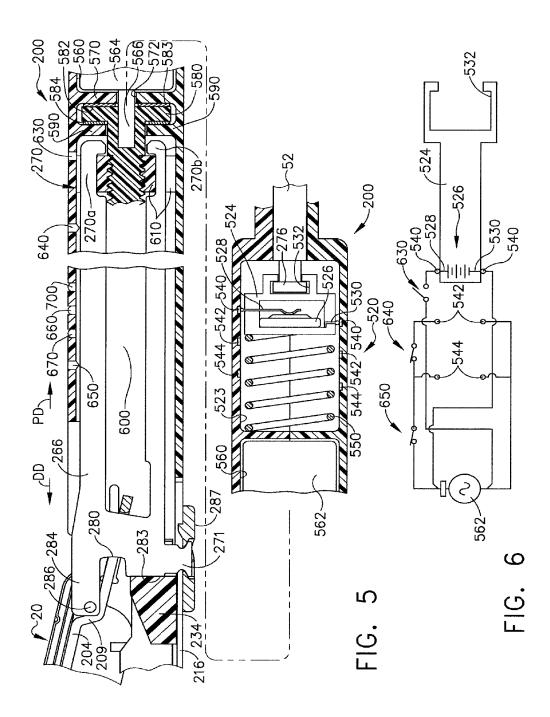
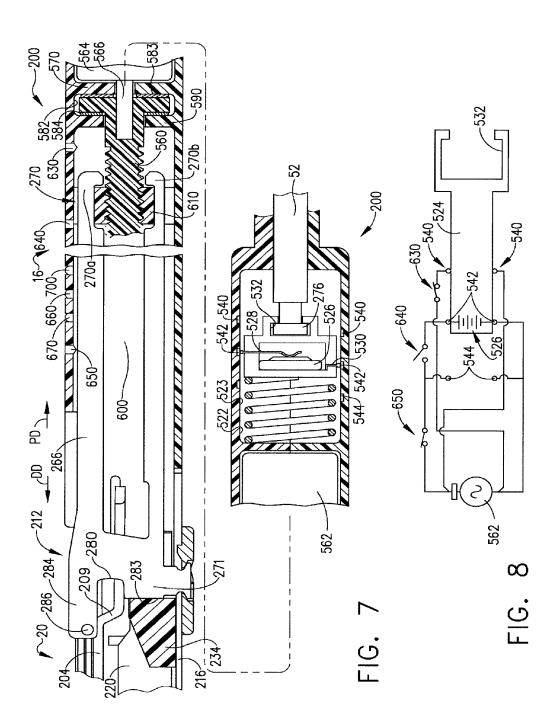
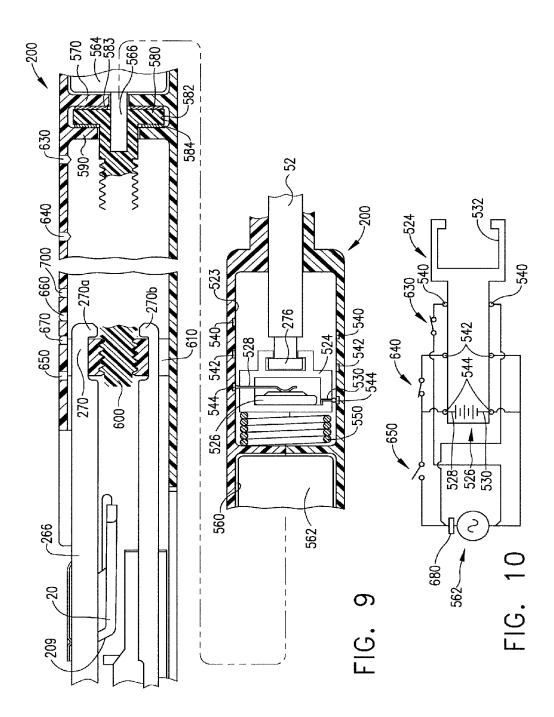

U.S. Appl. No. 13/974,177, filed Aug. 23, 2013. U.S. Appl. No. 13/974,182, filed Aug. 23, 2013.

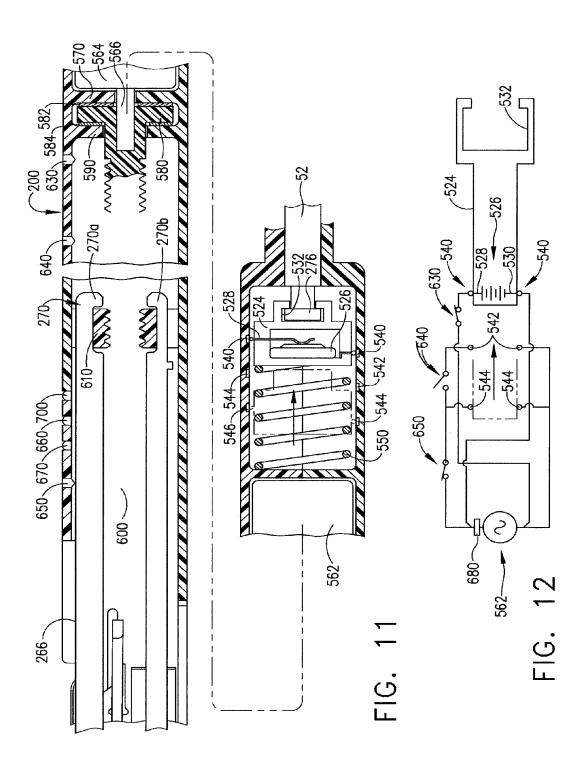
U.S. Appl. No. 13/974,208, filed Aug. 23, 2013.

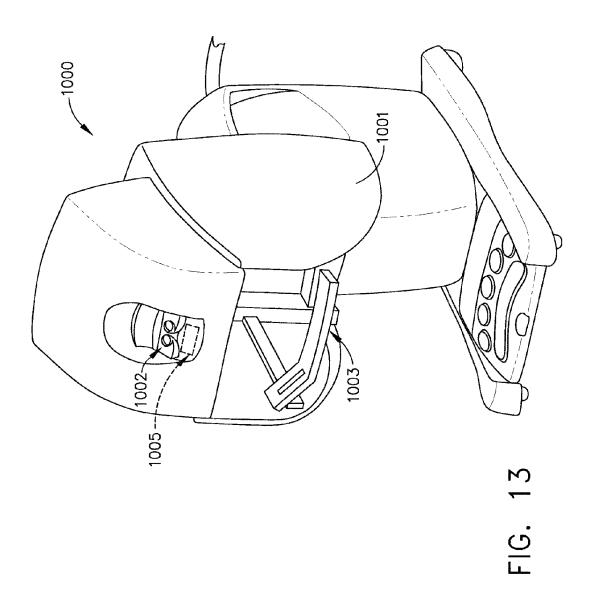
U.S. Appl. No. 13/974,209, filed Aug. 23, 2013.

U.S. Appl. No. 12/031,573, filed Feb. 14, 2008.

^{*} cited by examiner


FIG. 2



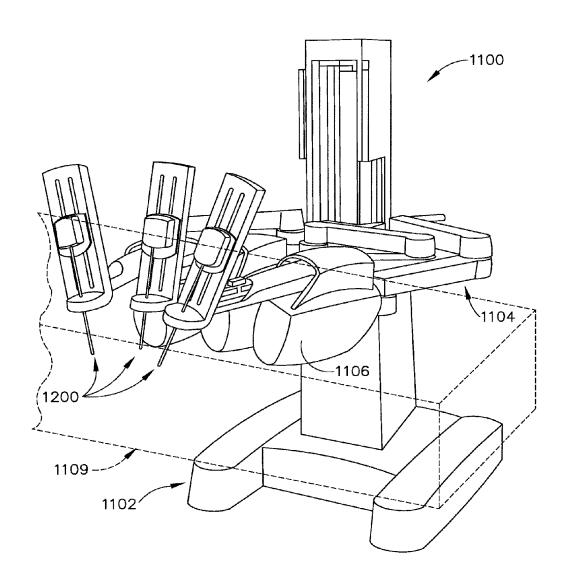
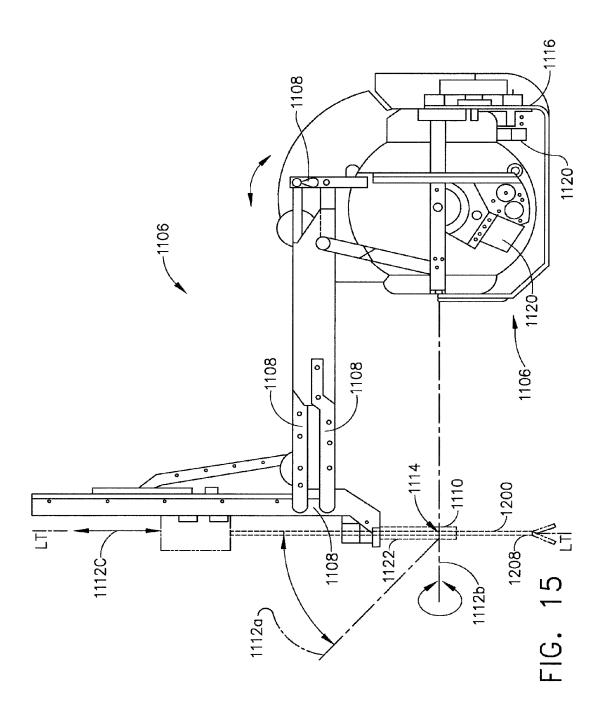
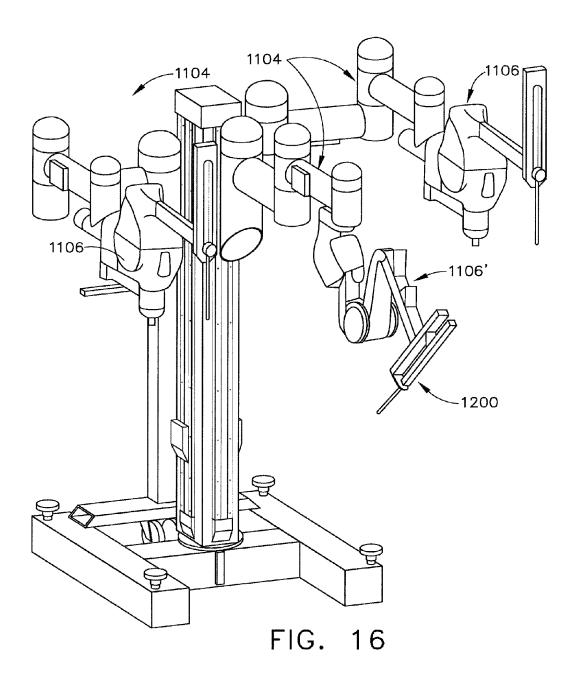
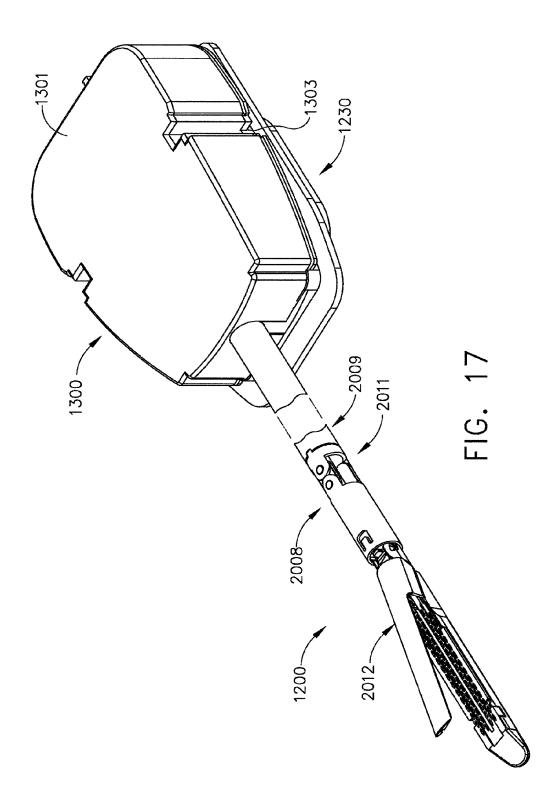
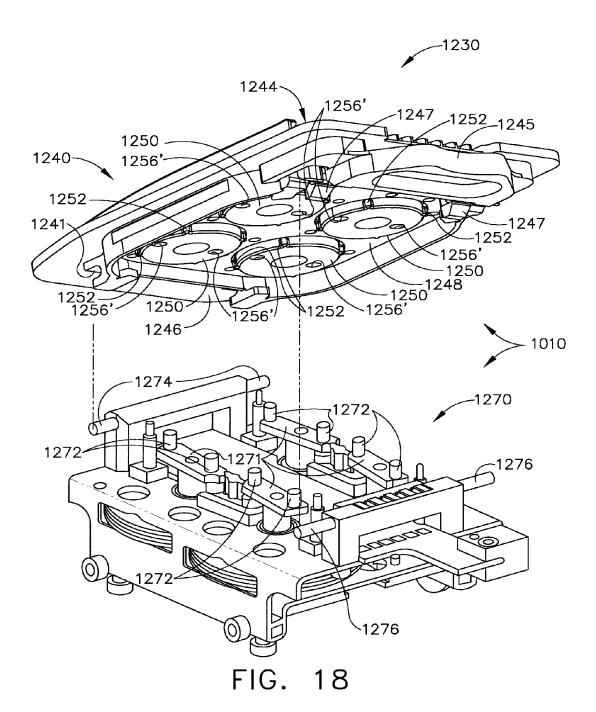






FIG. 14

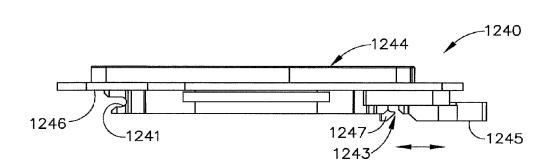


FIG. 19

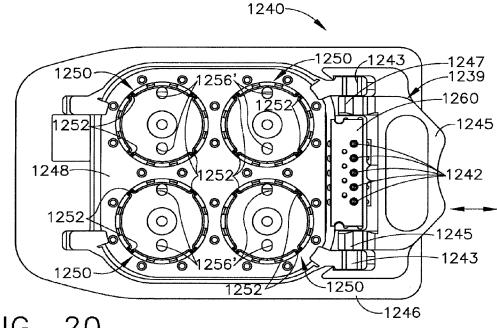
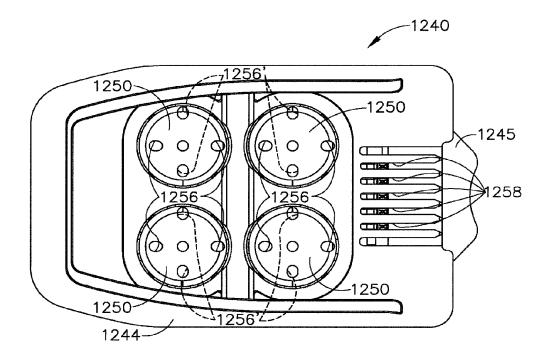
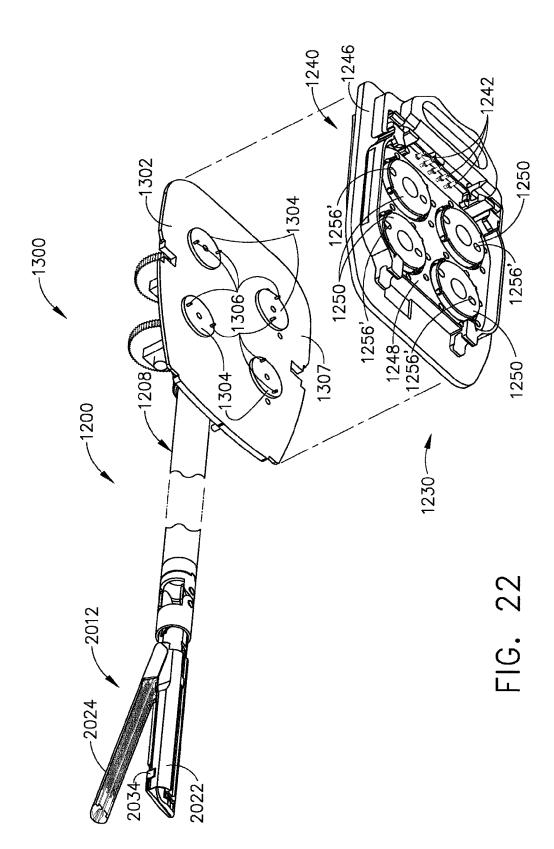
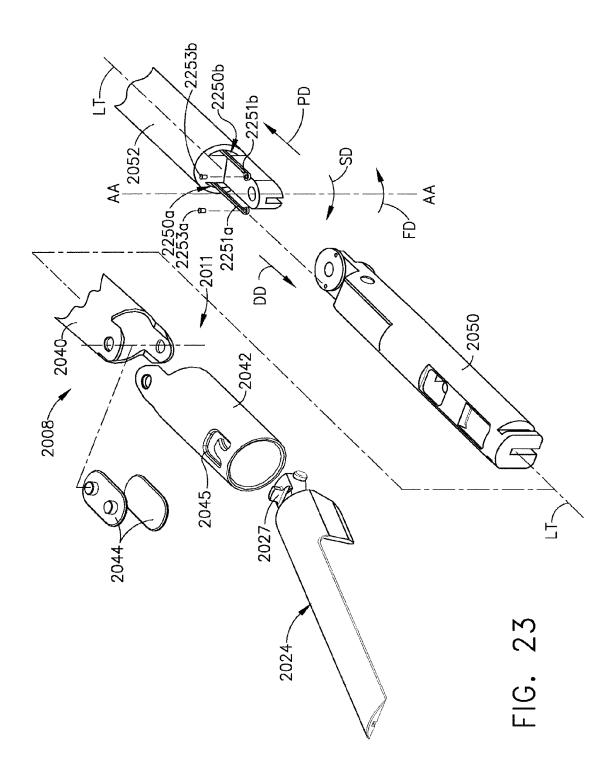
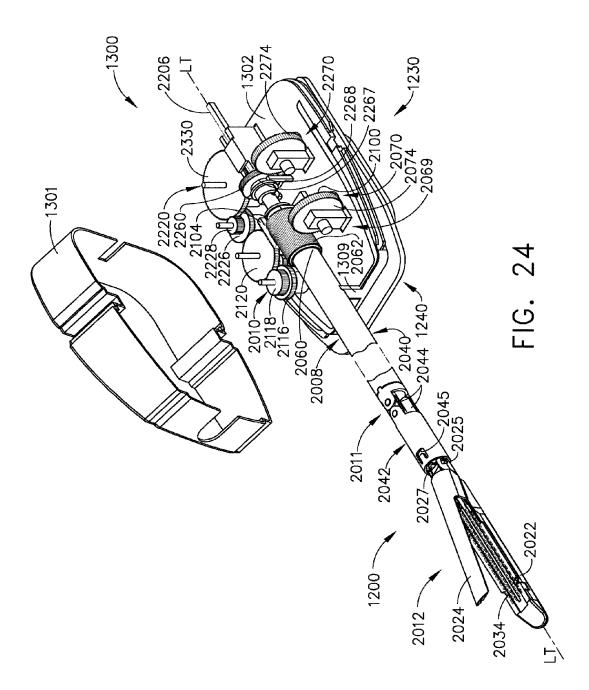
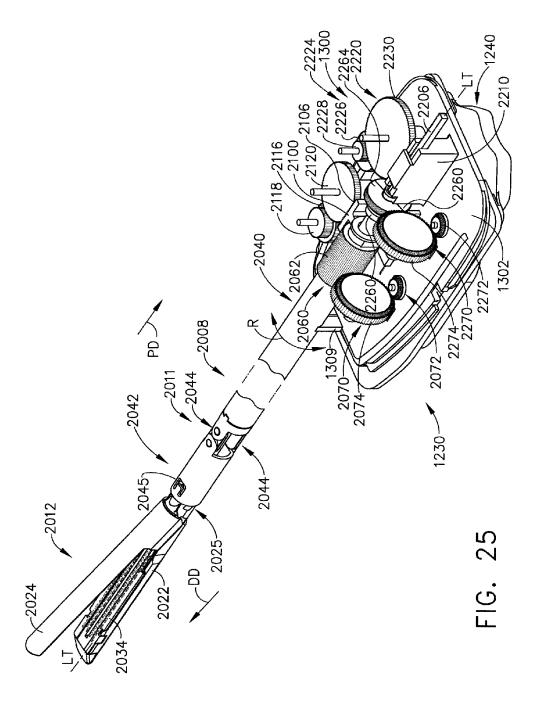
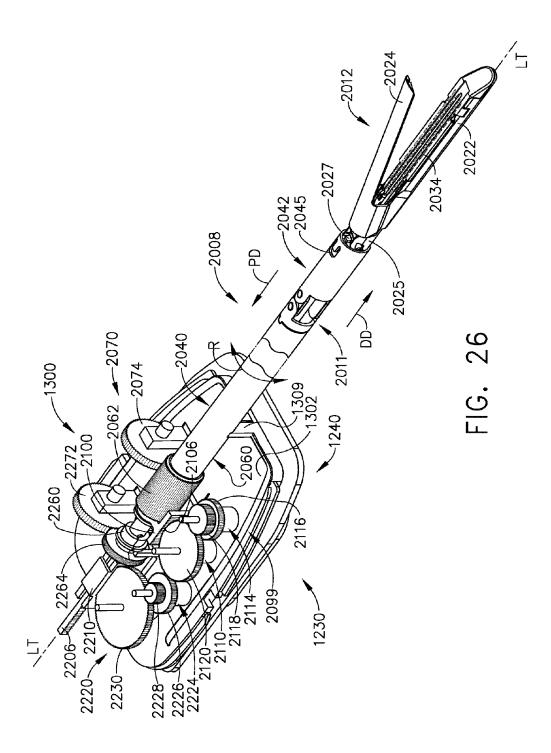
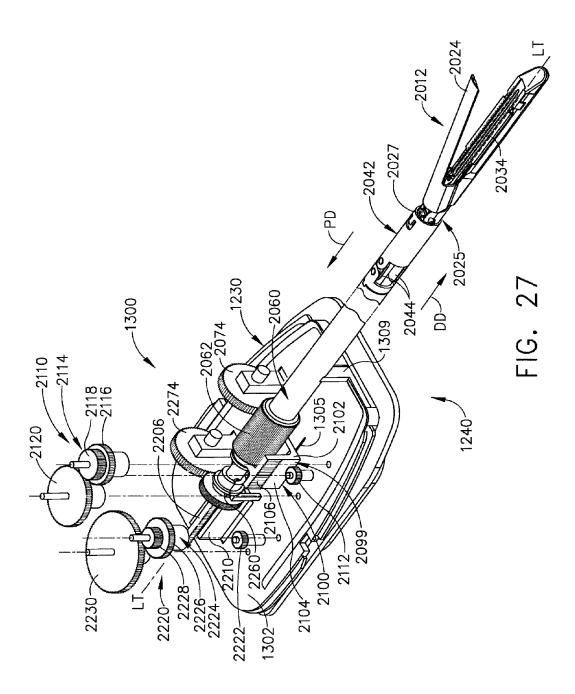
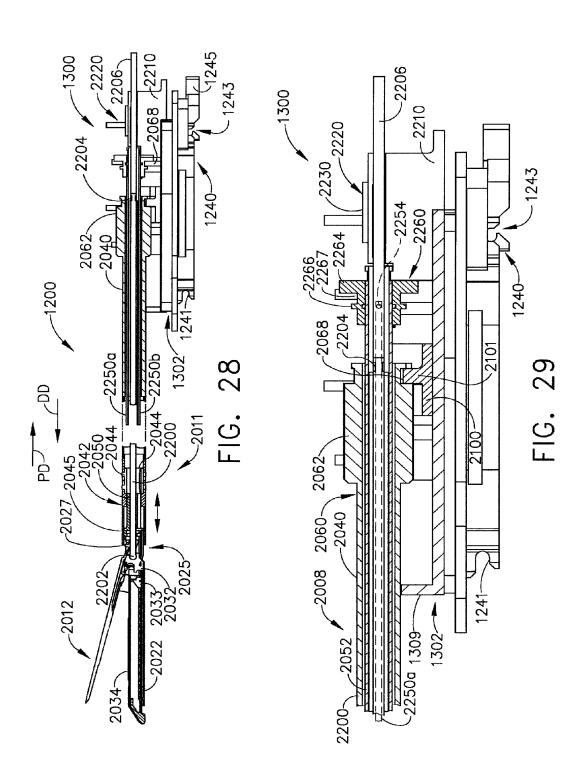


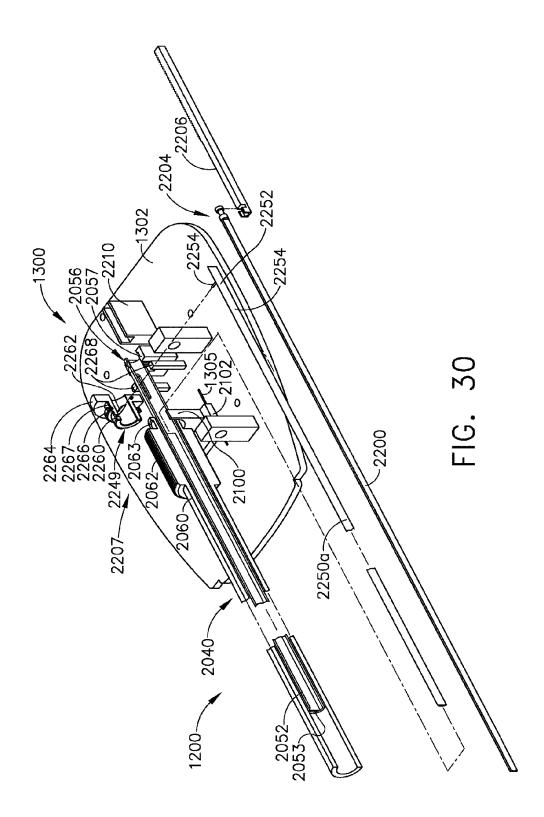
FIG. 20

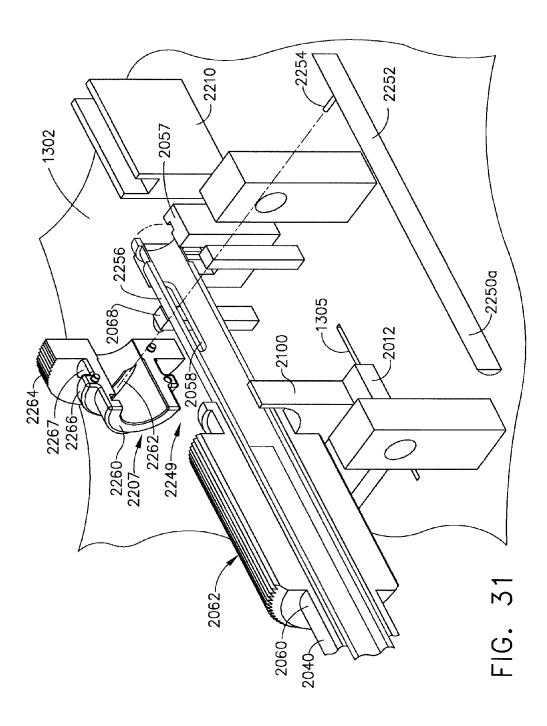






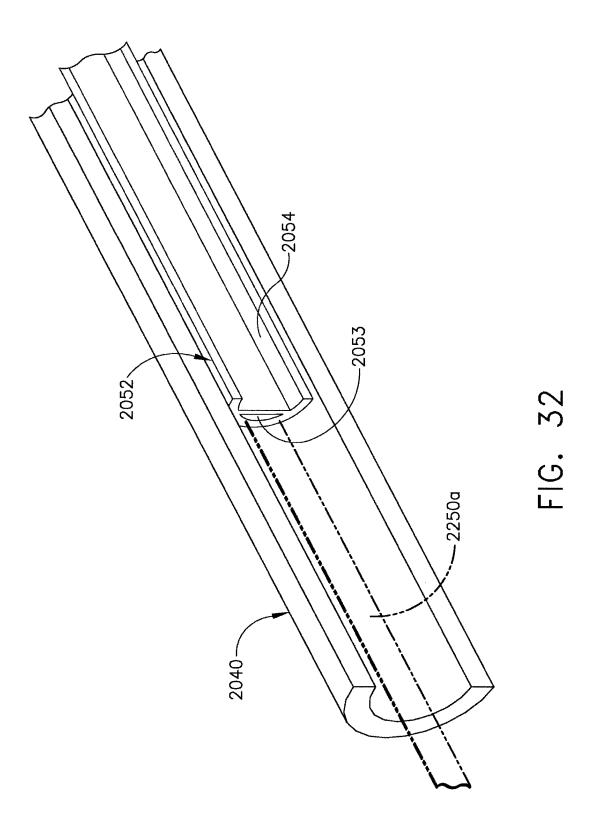

FIG. 21











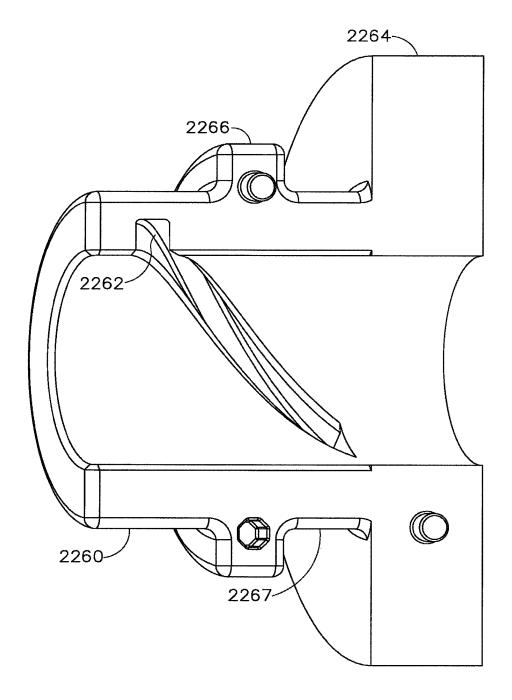
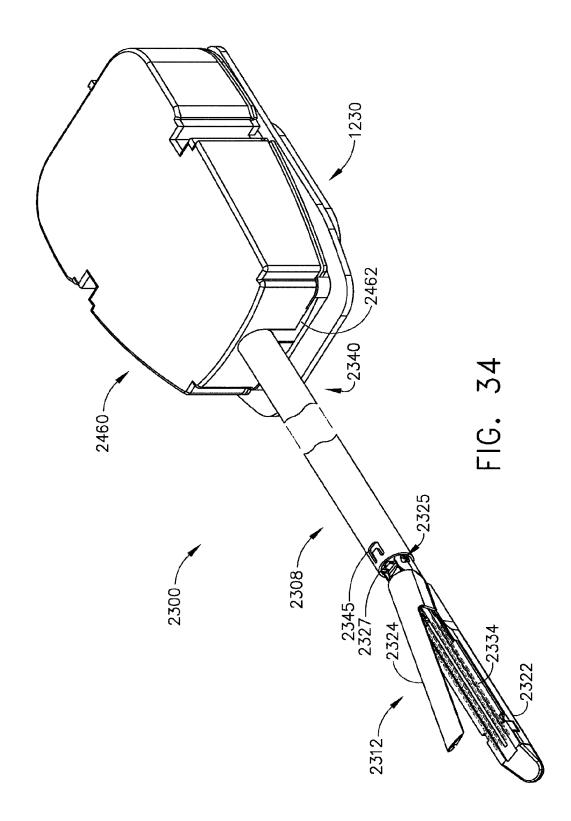
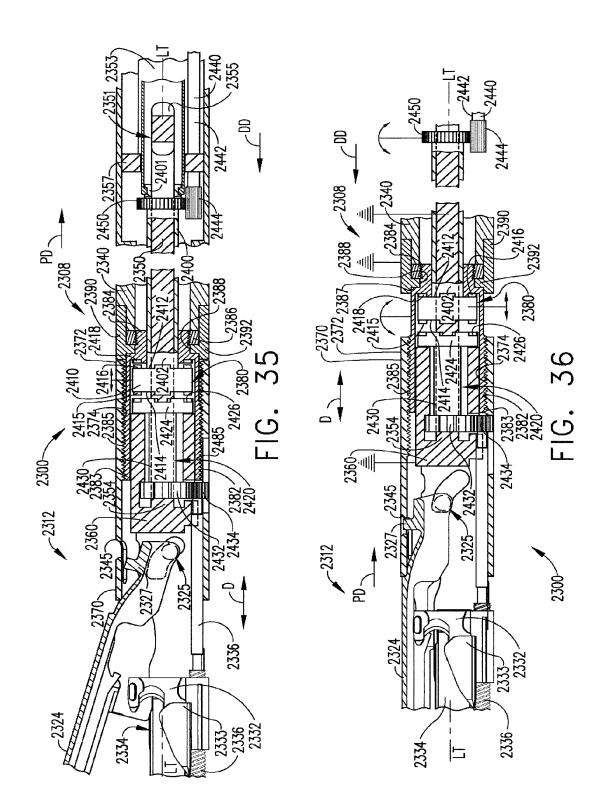
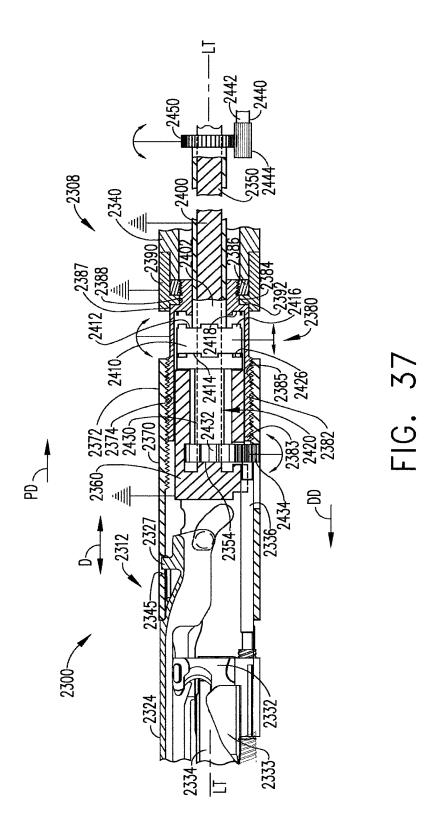





FIG. 33

55

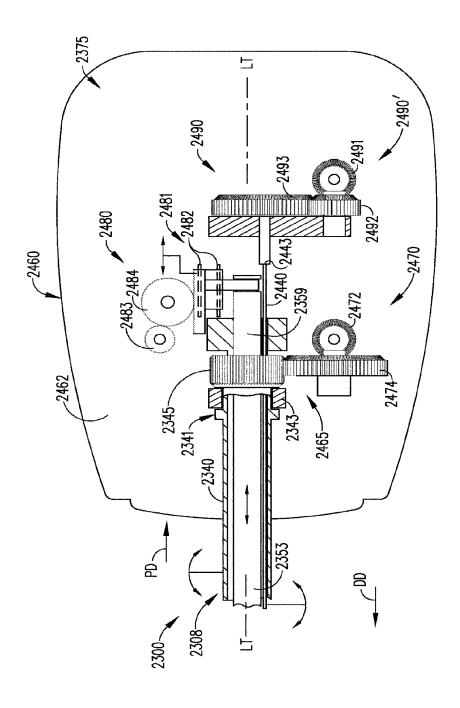
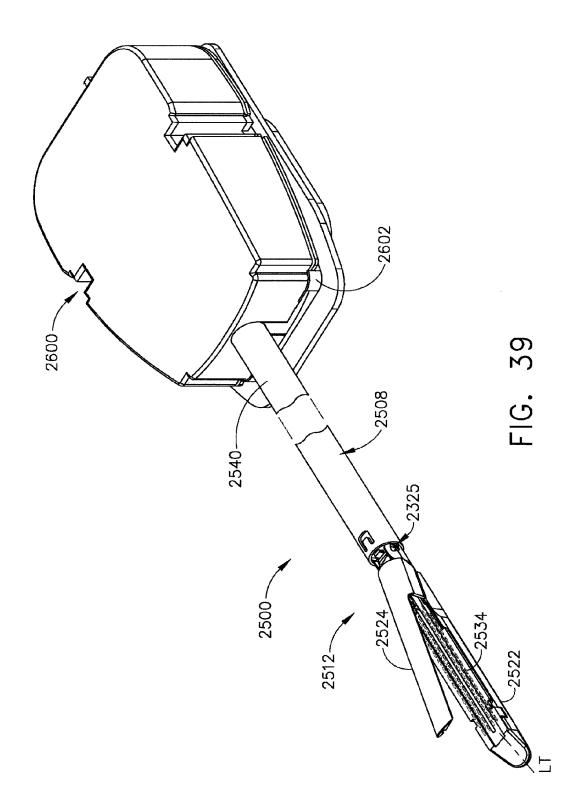
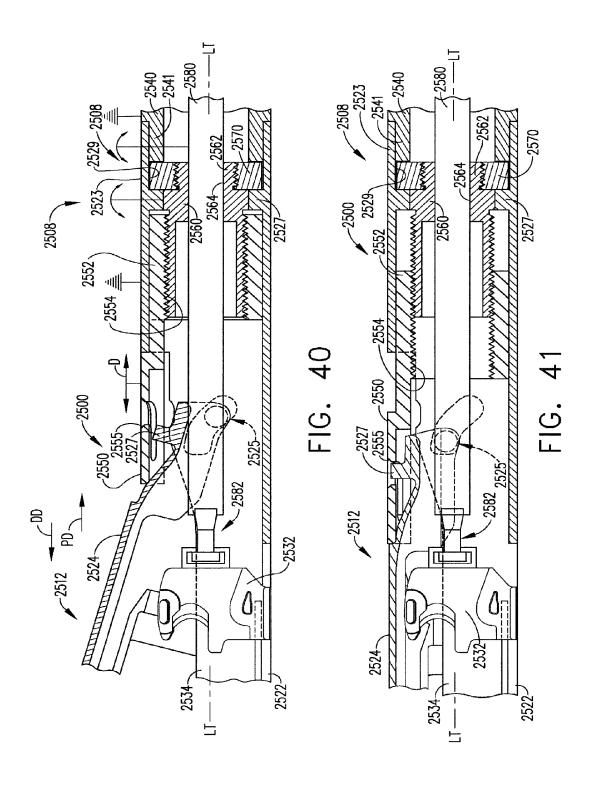




FIG. 38

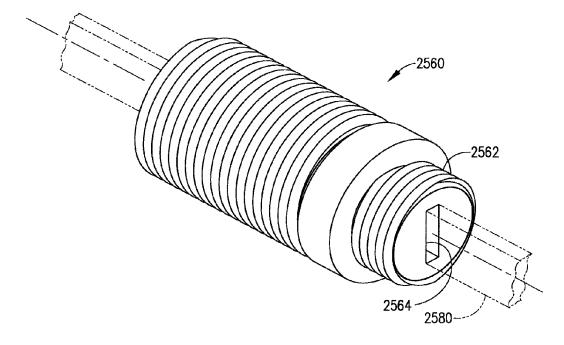


FIG. 42

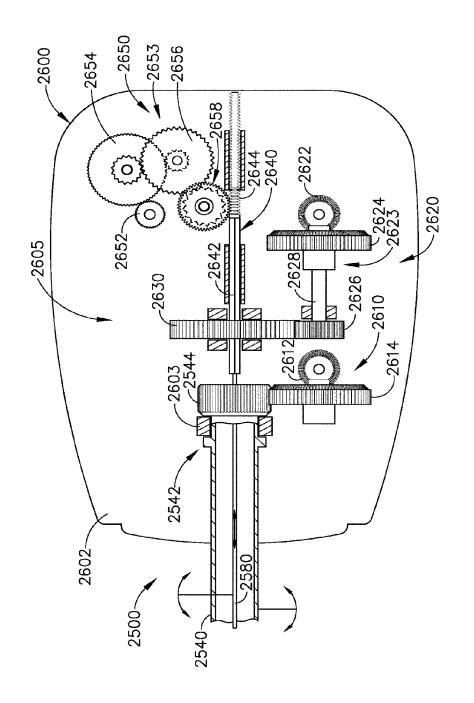
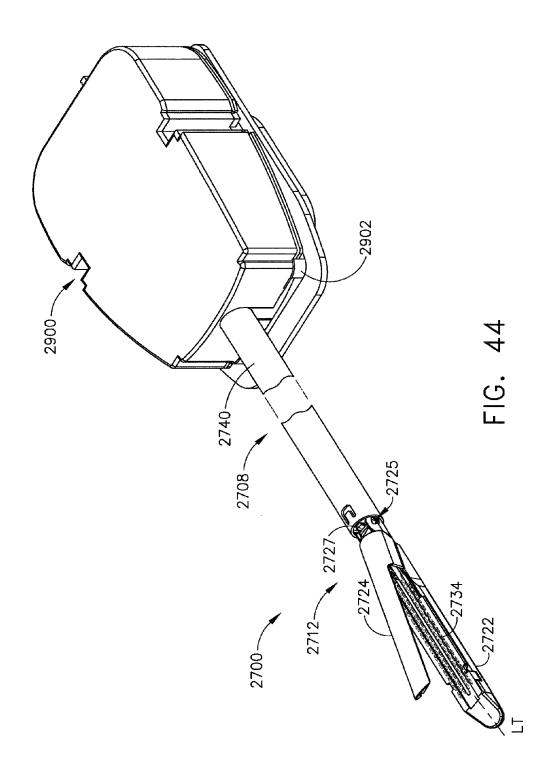
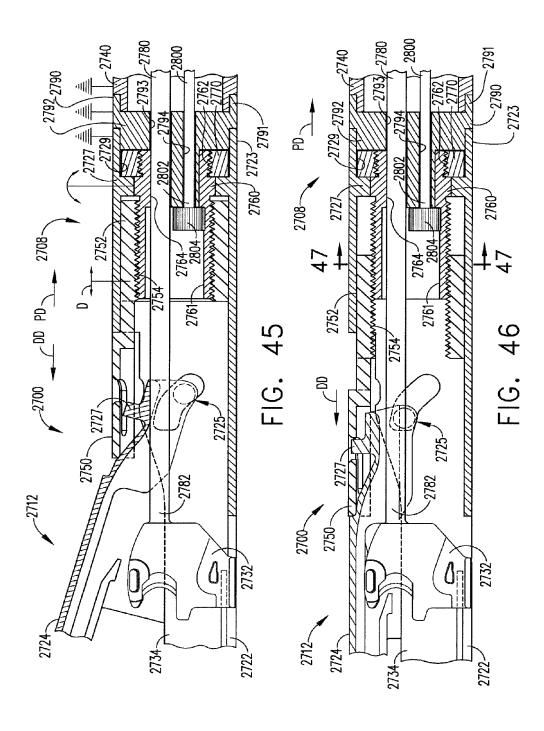




FIG. 45

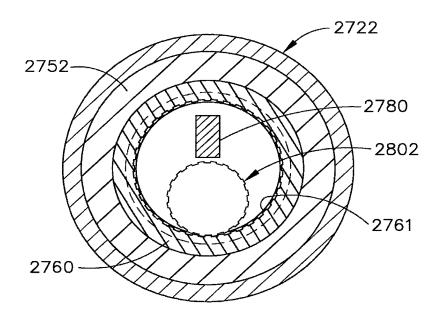


FIG. 47

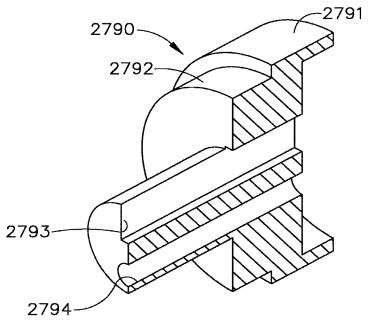


FIG. 48

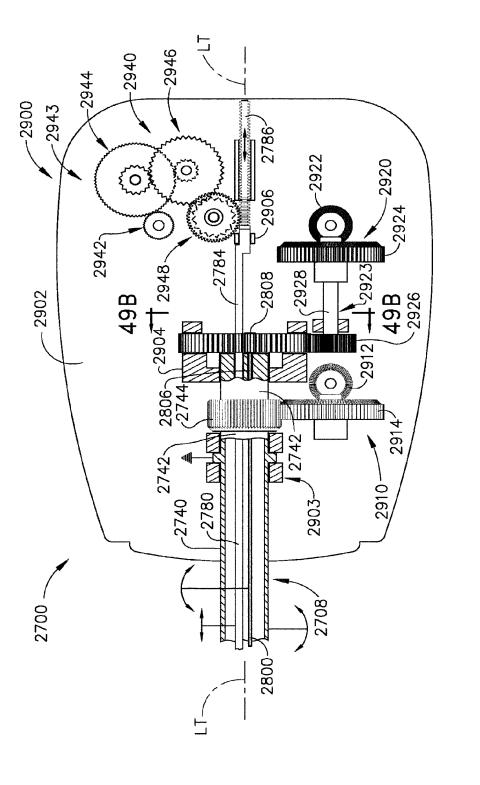
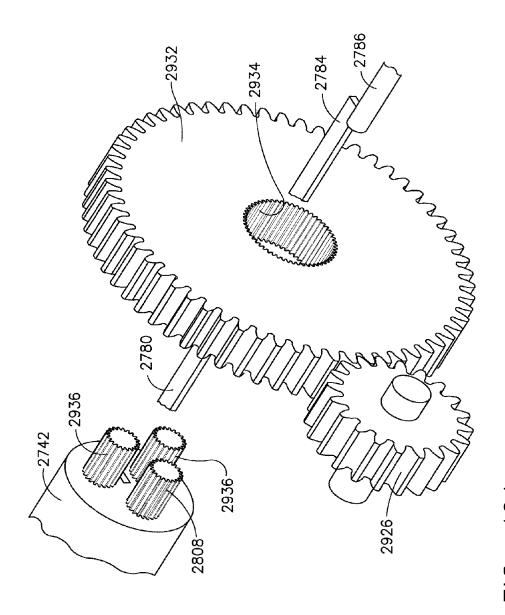
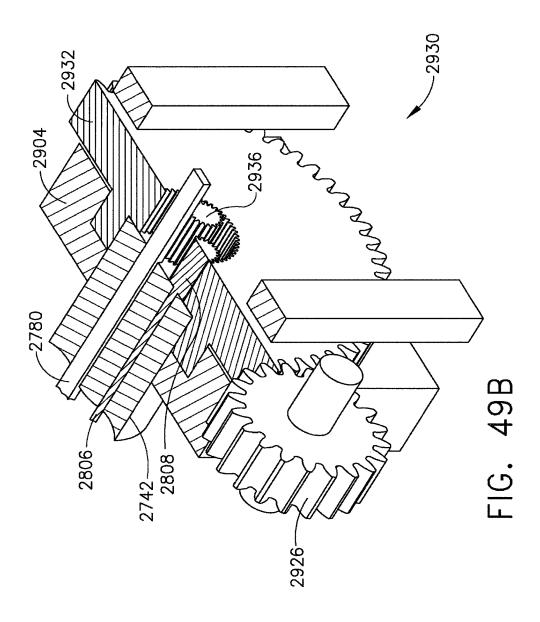
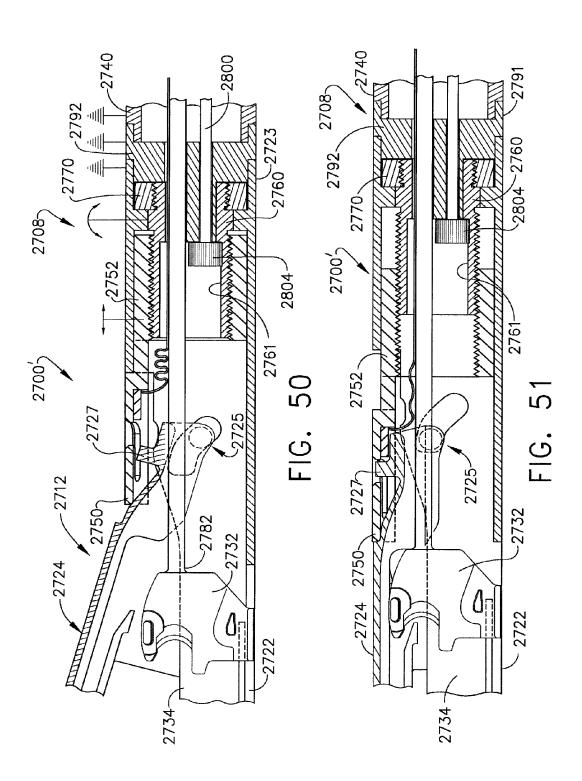
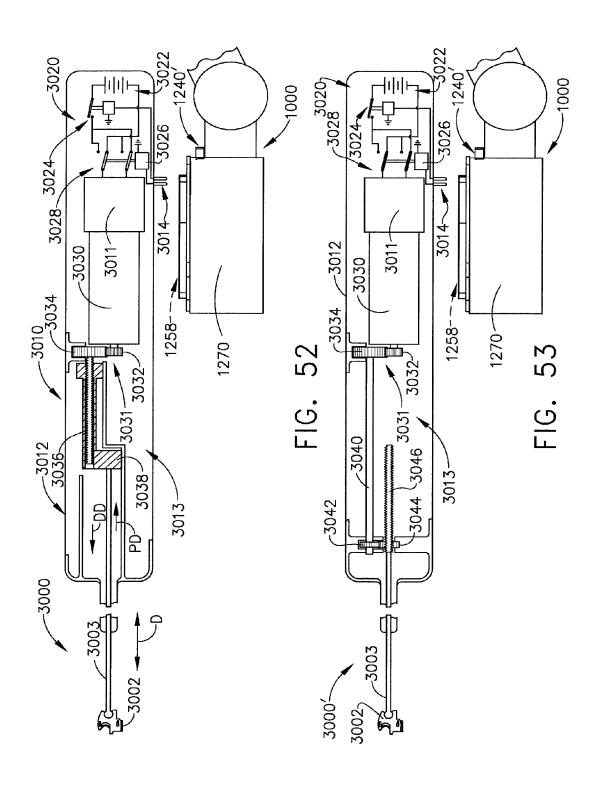
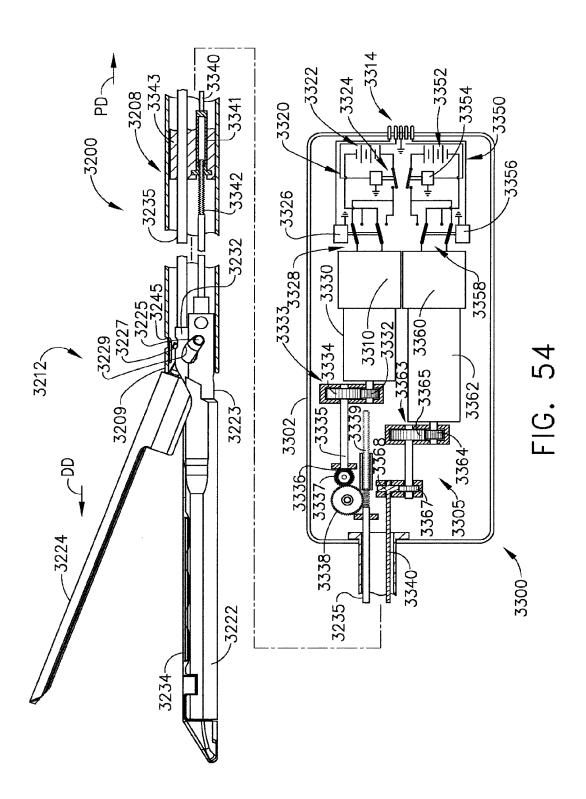
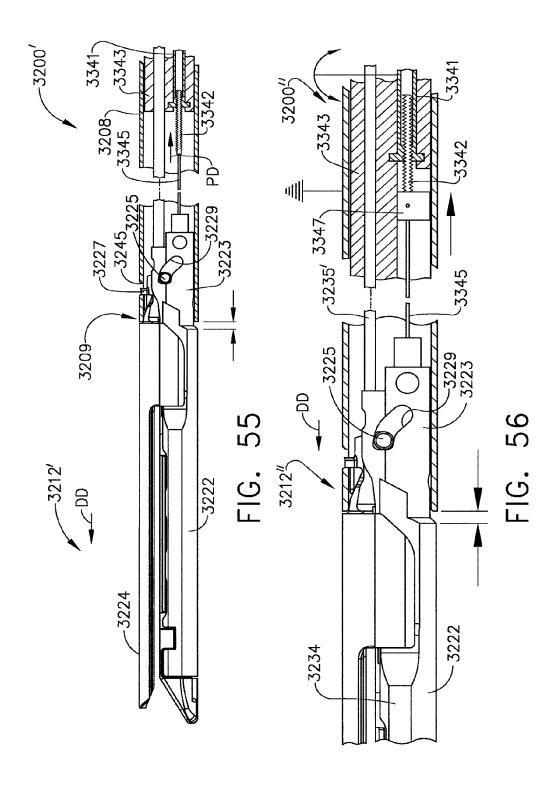
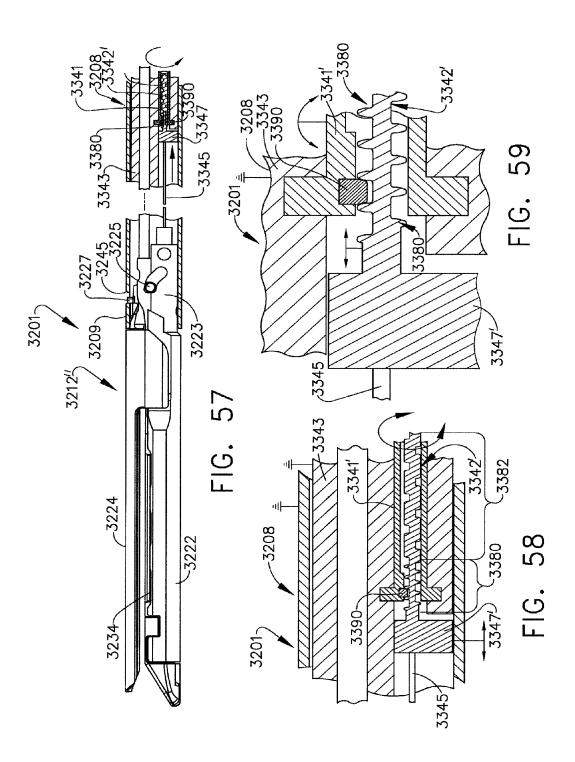
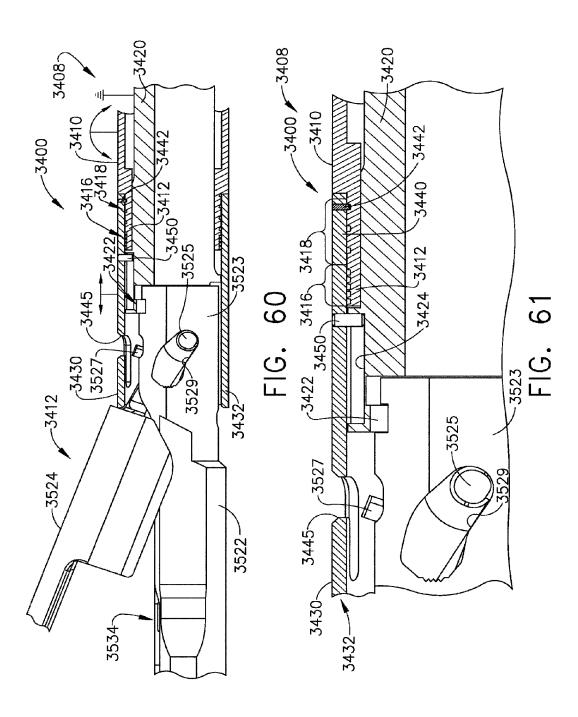


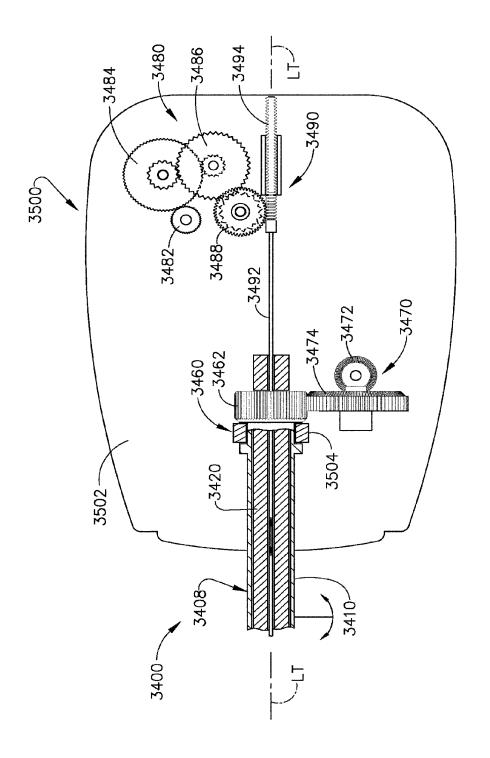
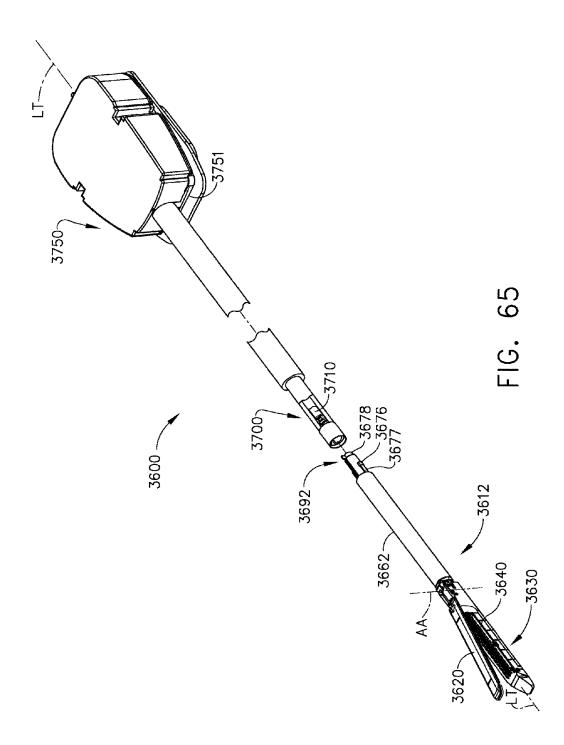
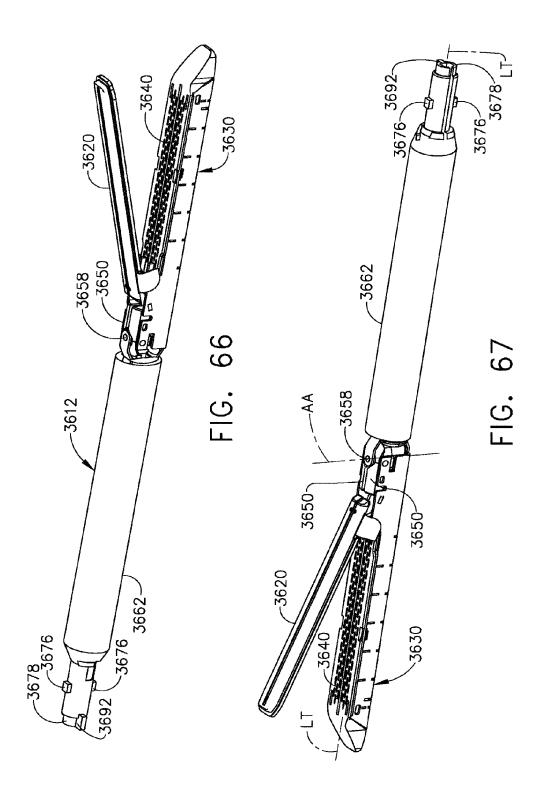
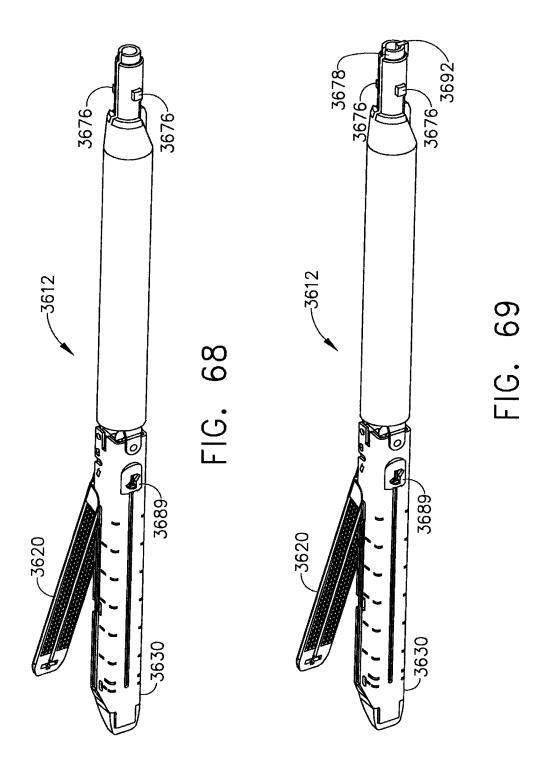
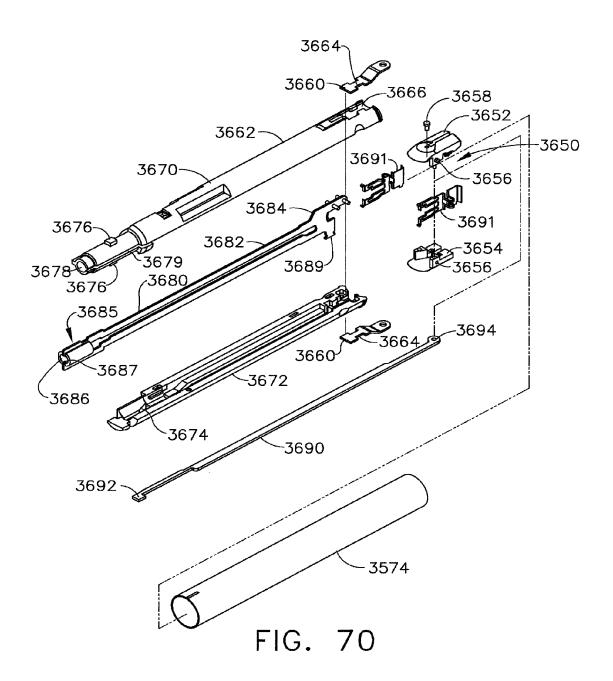
FIG. 49

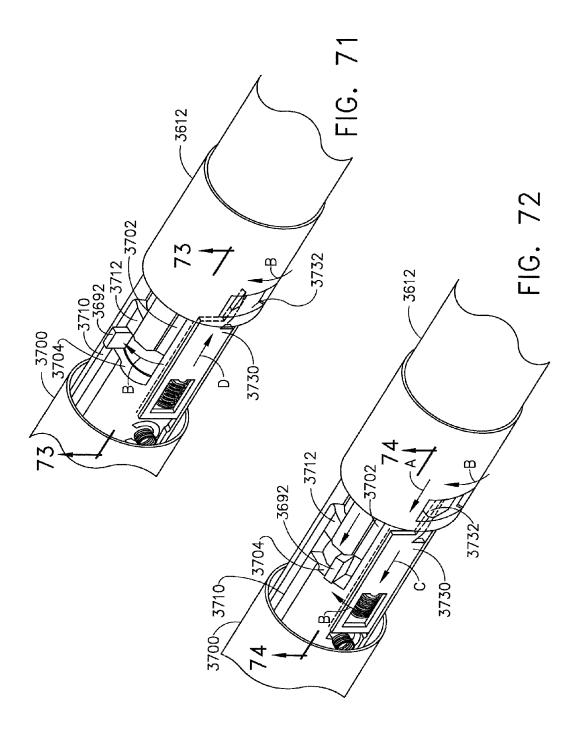






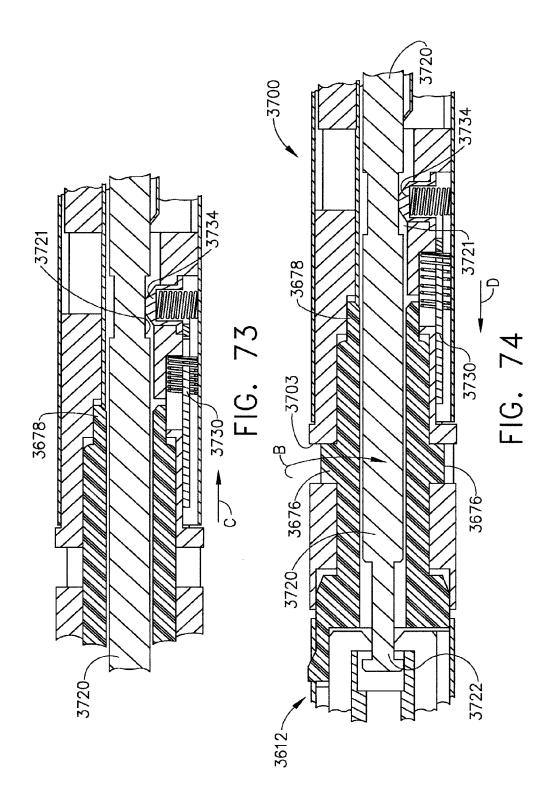

FIG. 49A

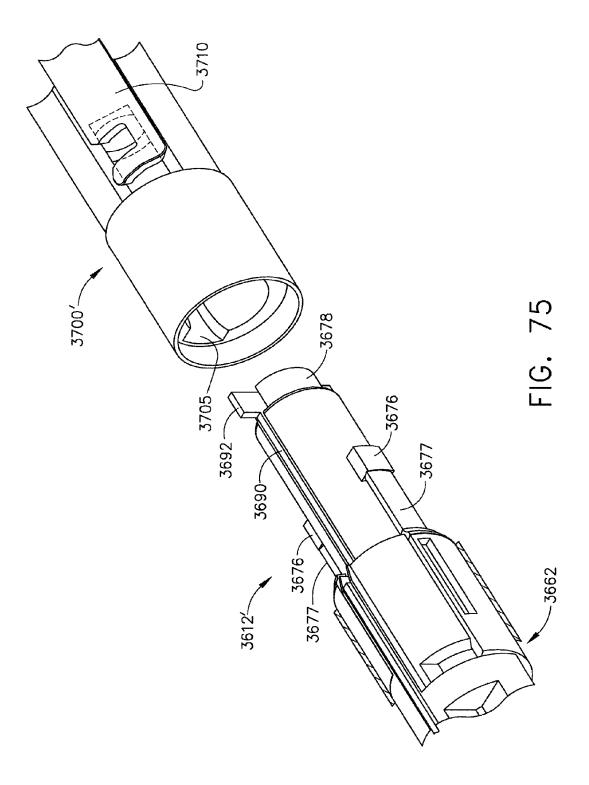


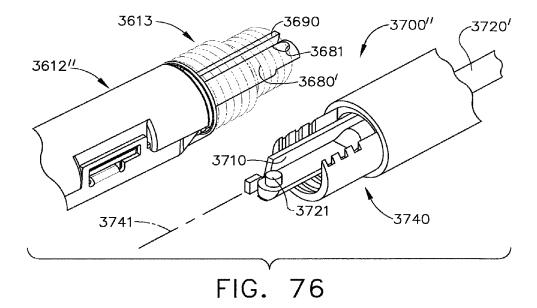


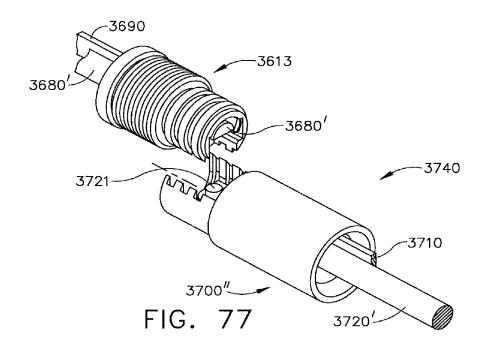






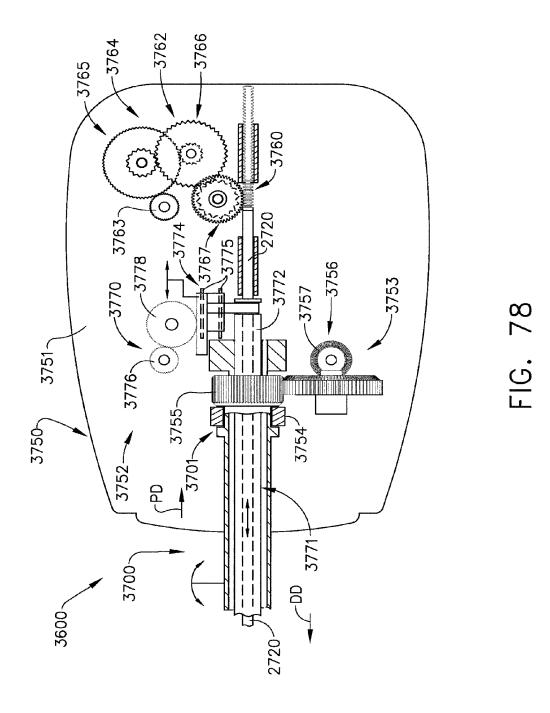

FIG. 64

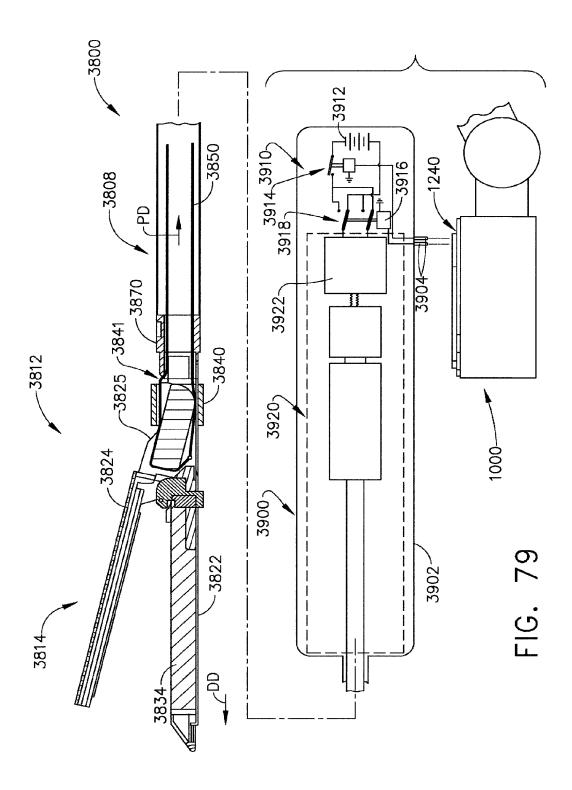


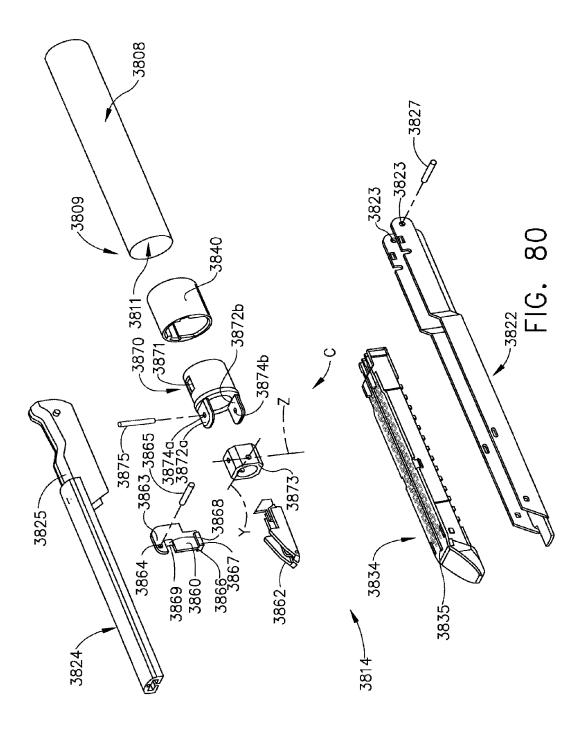


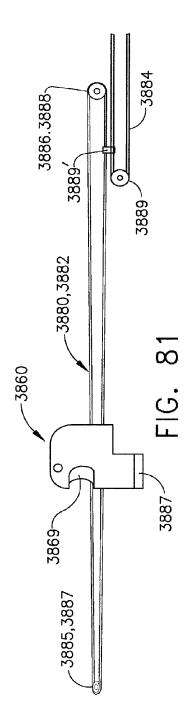


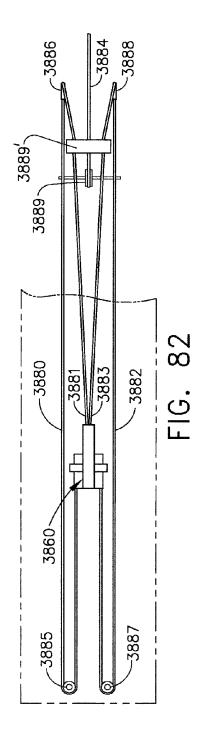


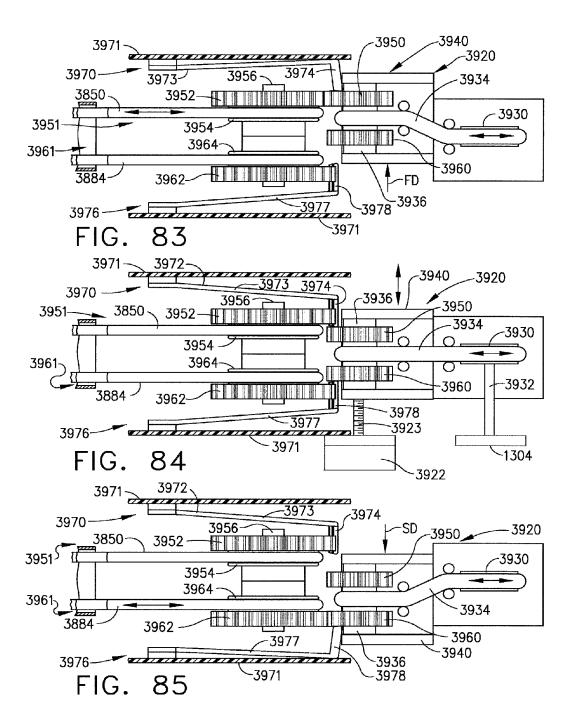


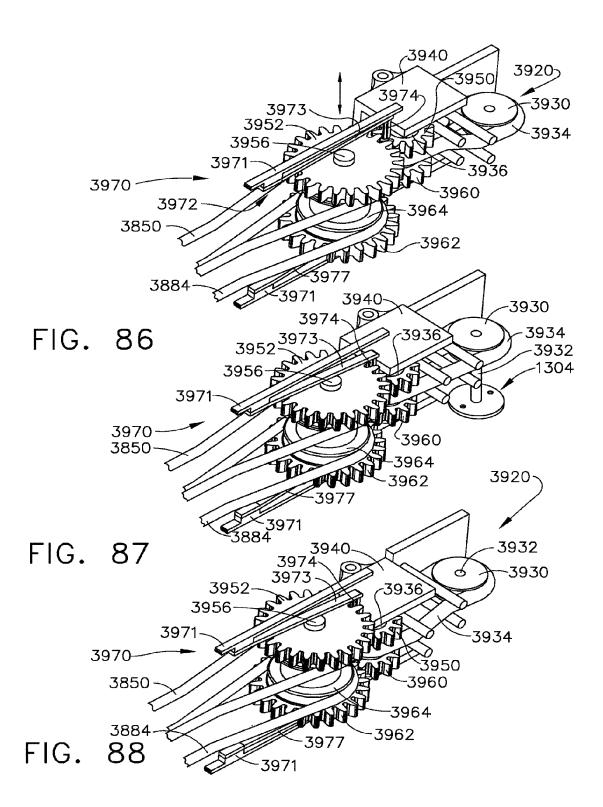


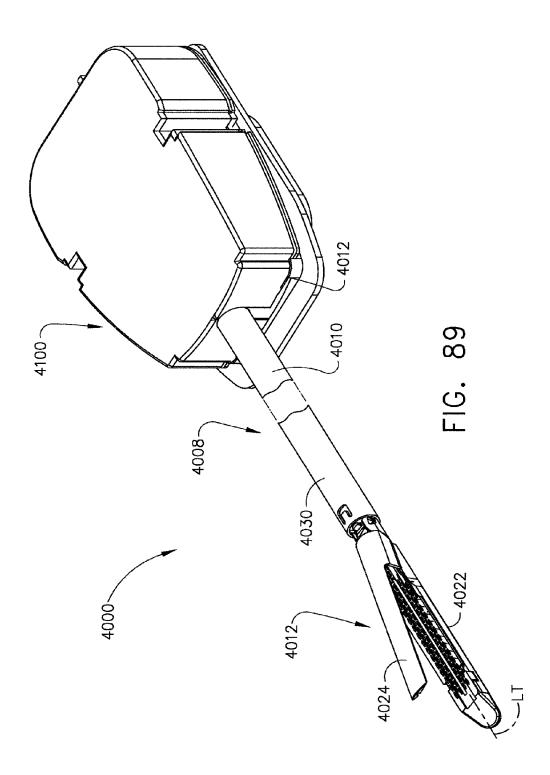


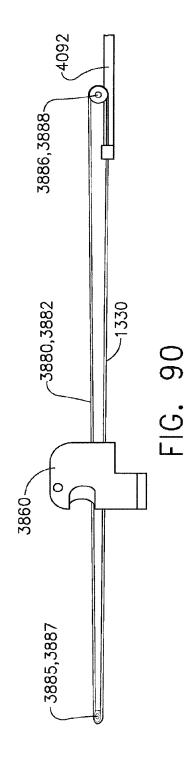


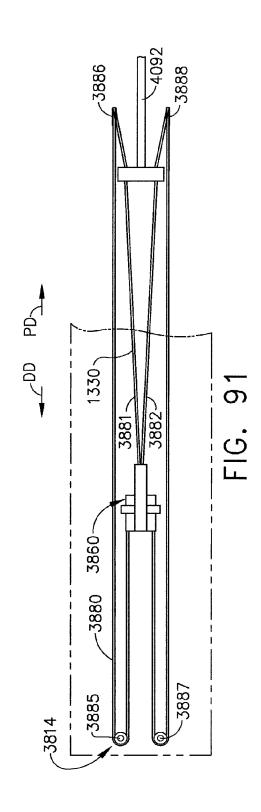












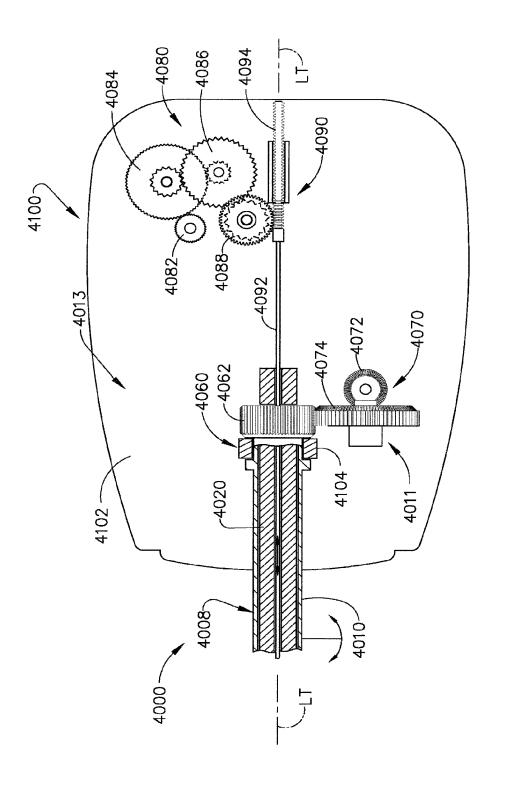
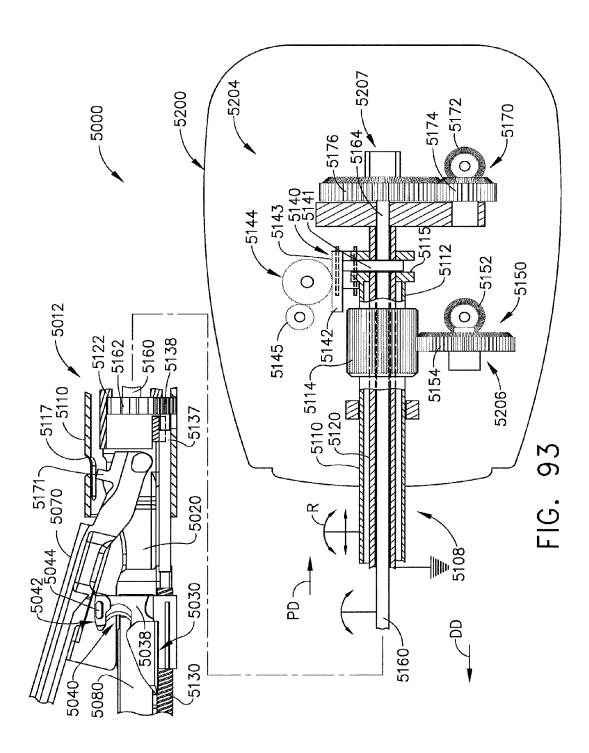
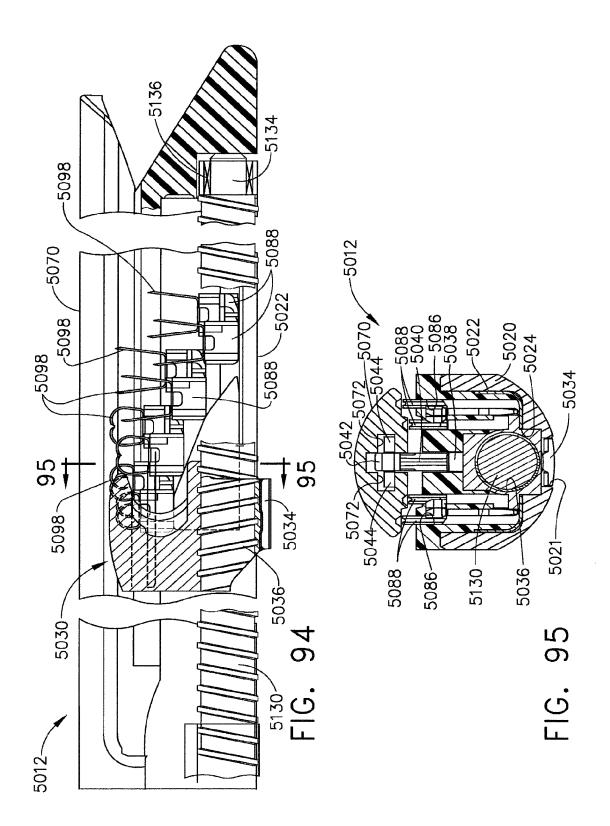
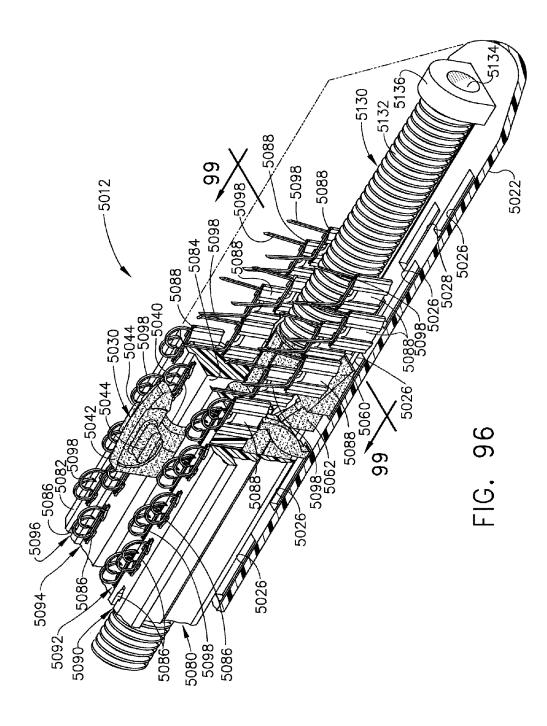
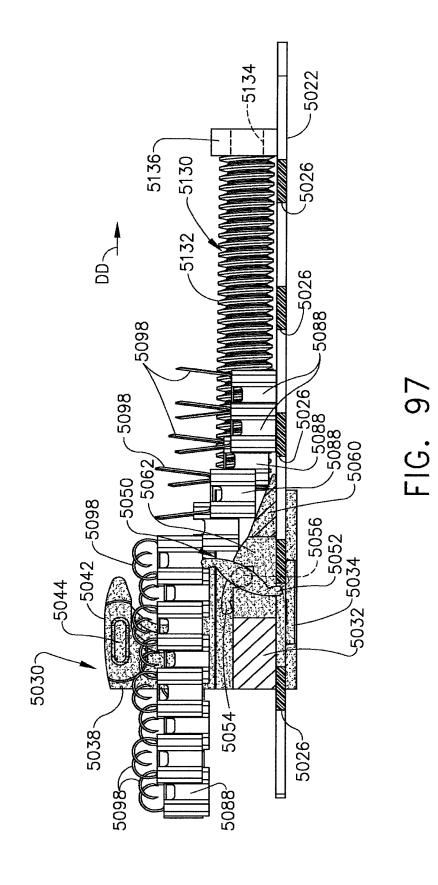
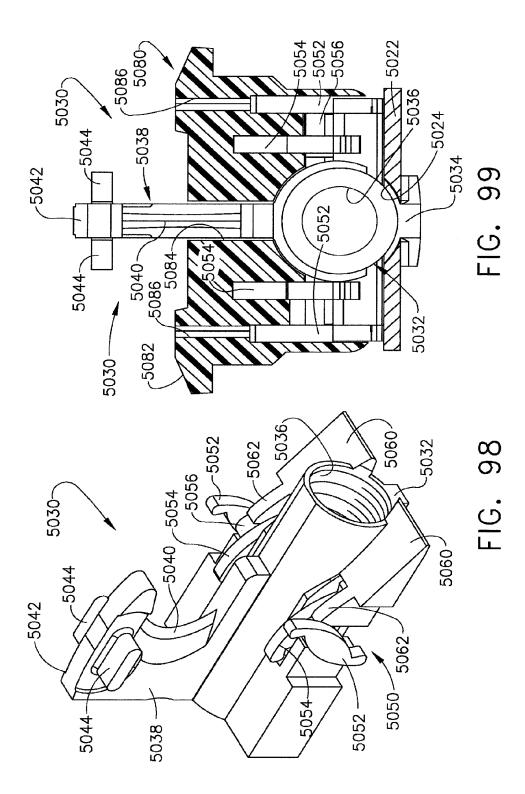
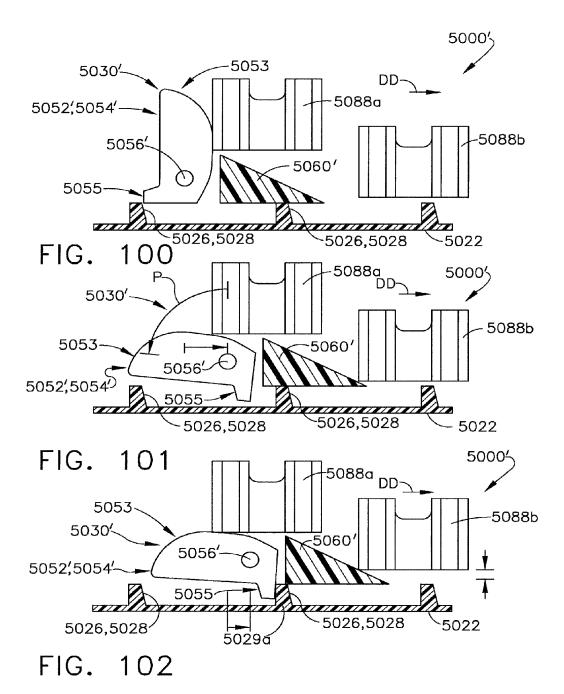
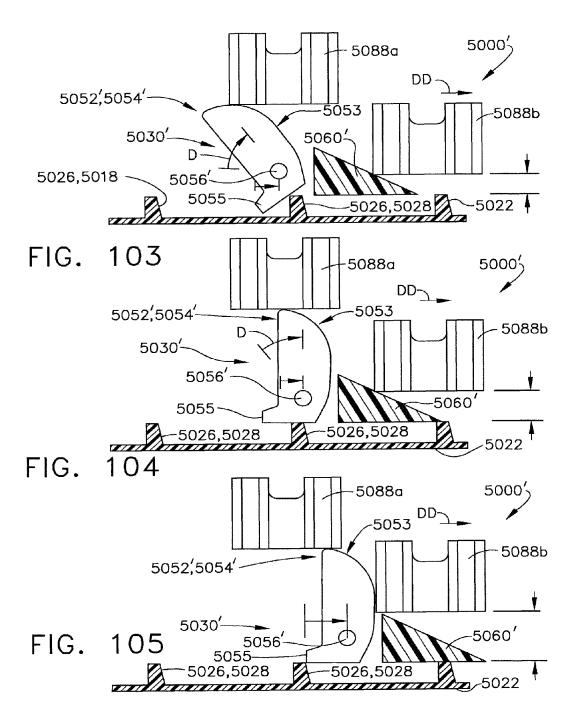
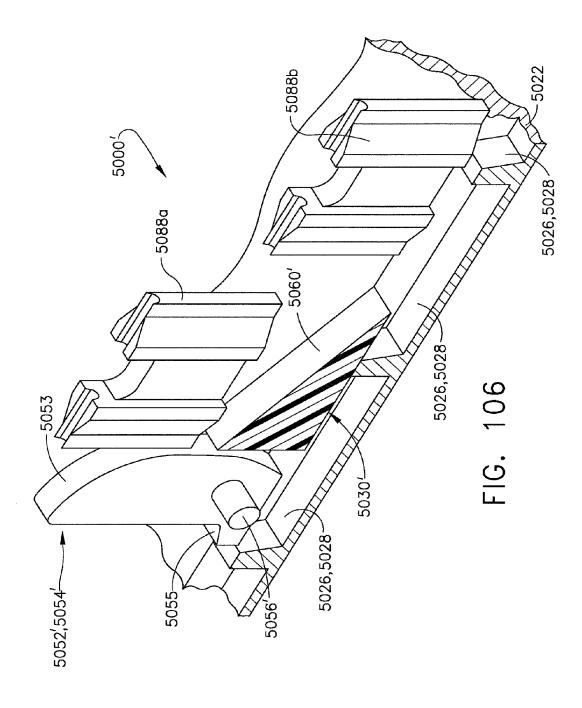






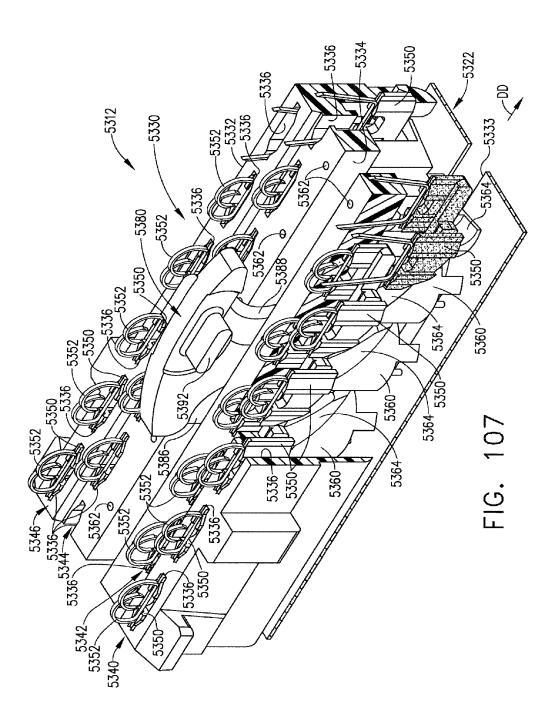
FIG. 92

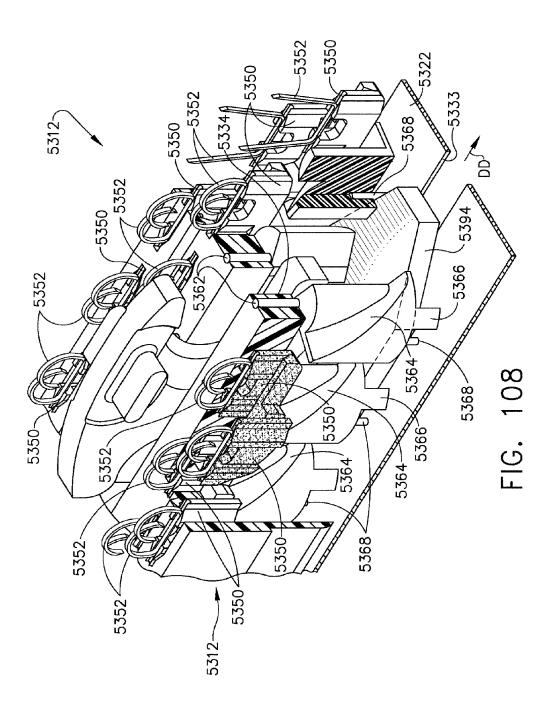









95



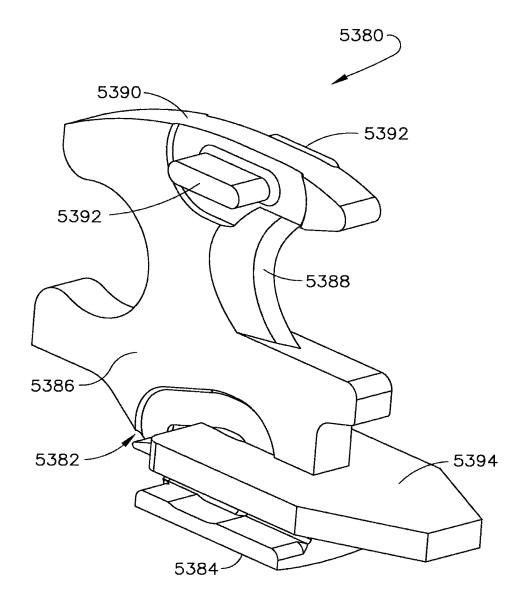
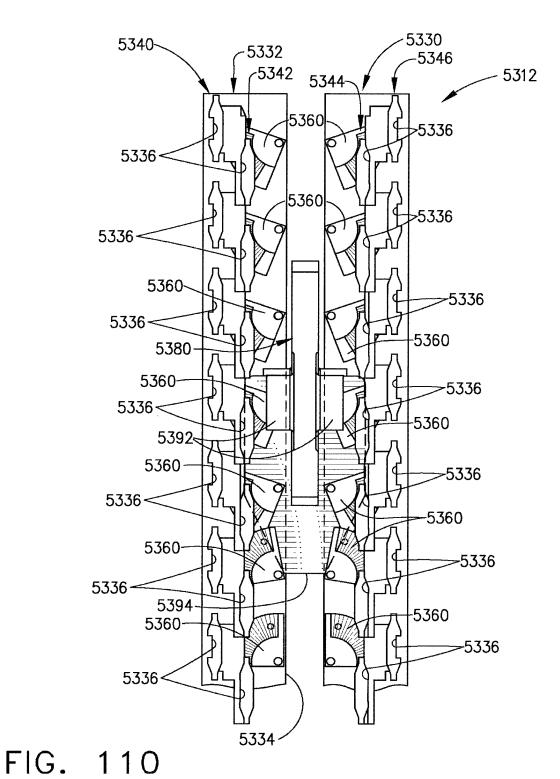
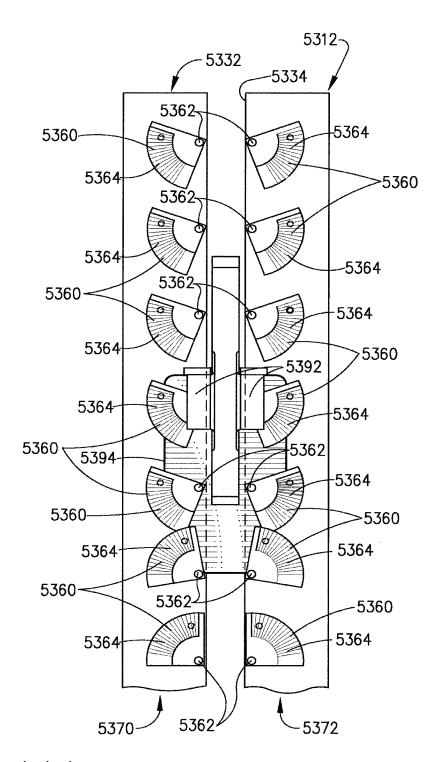
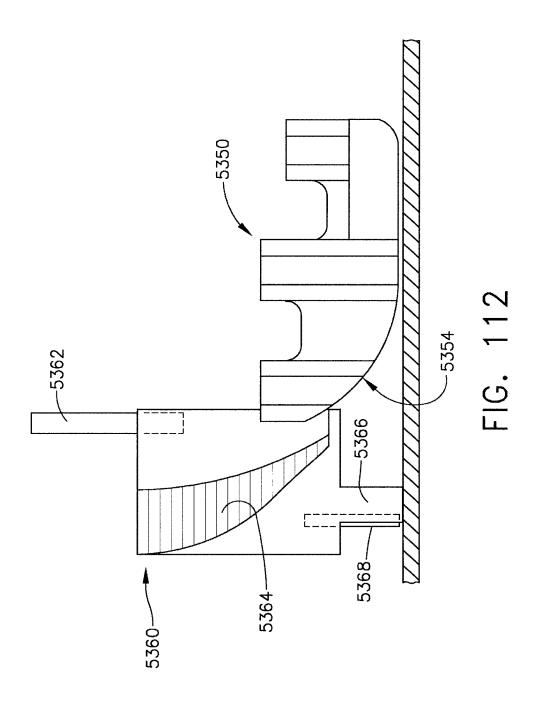
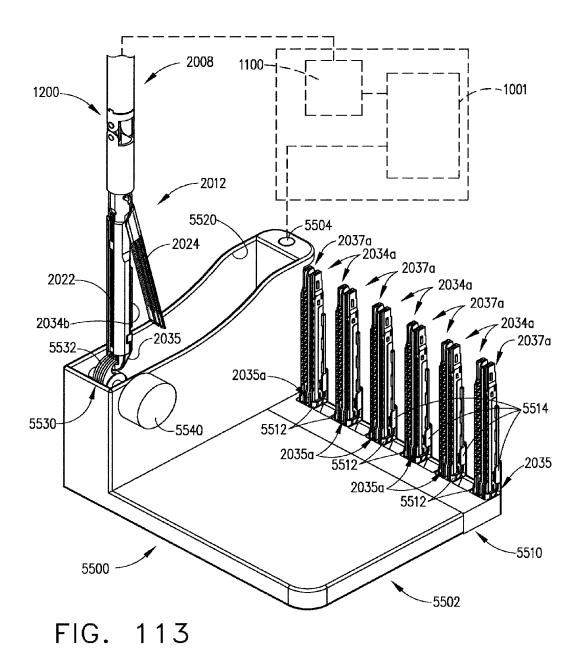
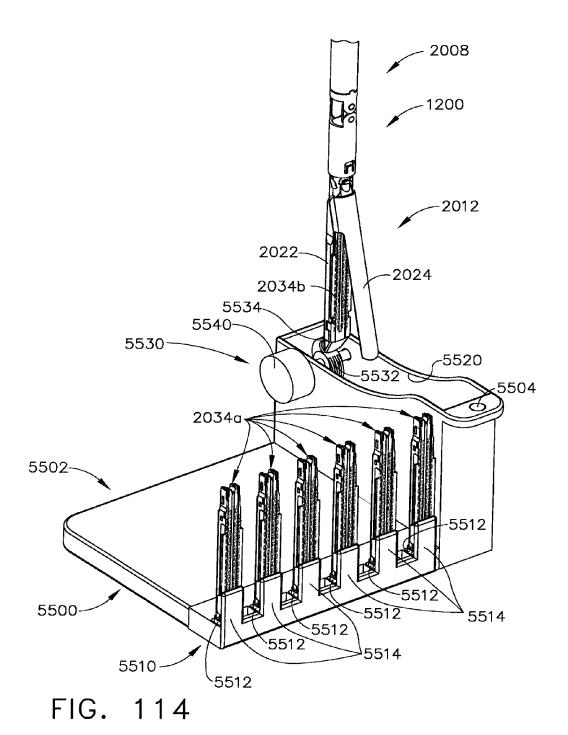
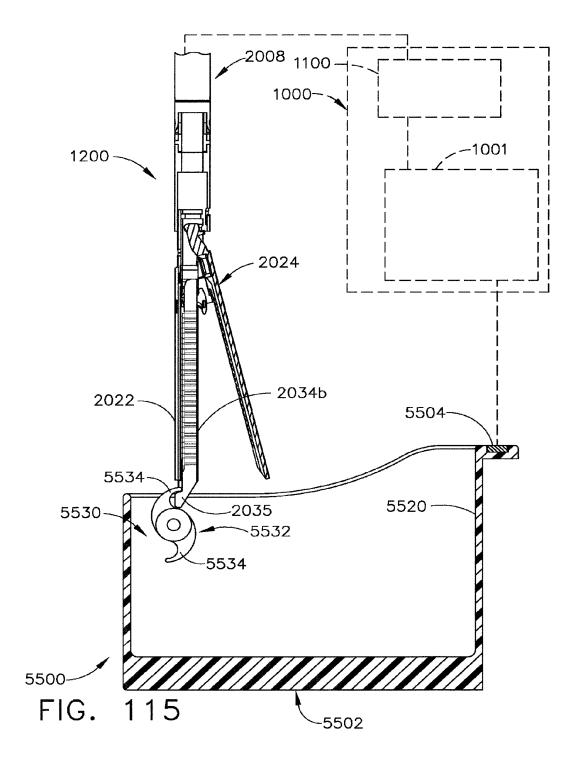
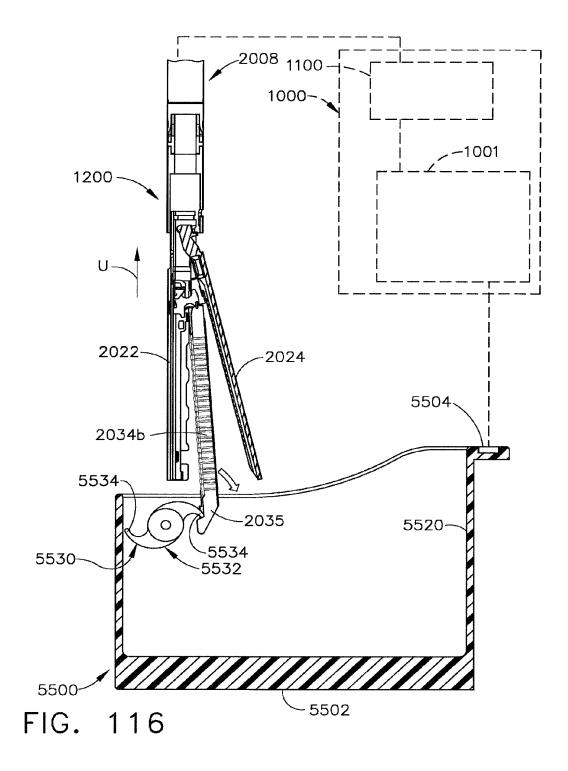
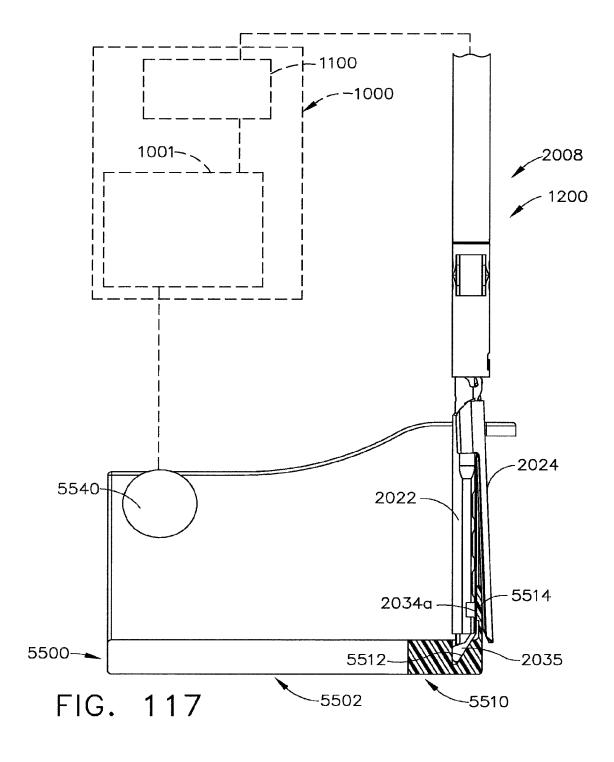
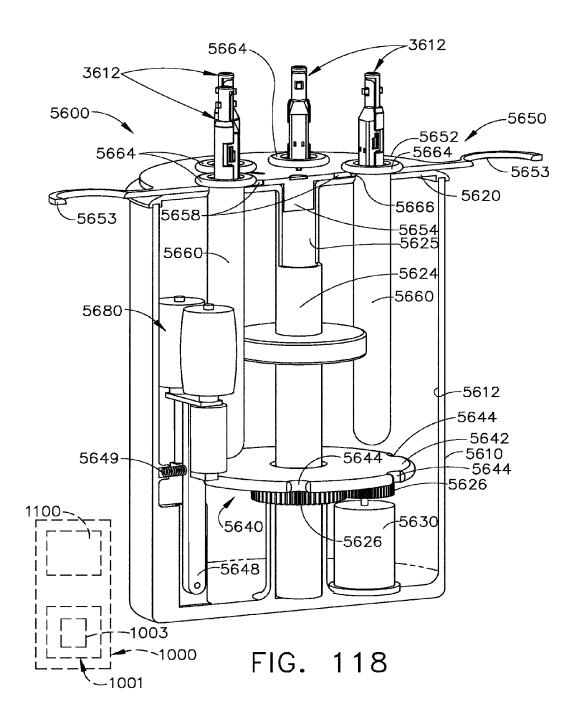



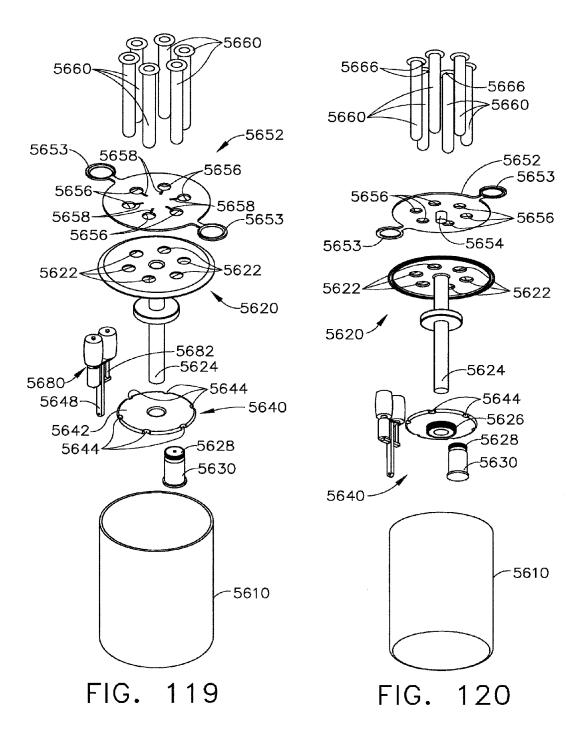
FIG. 109

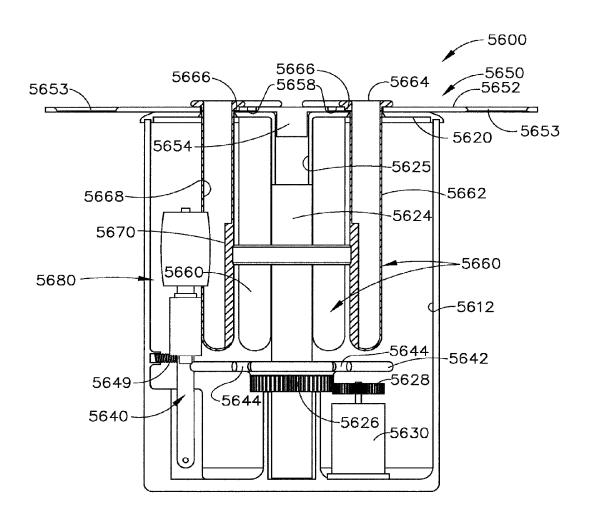
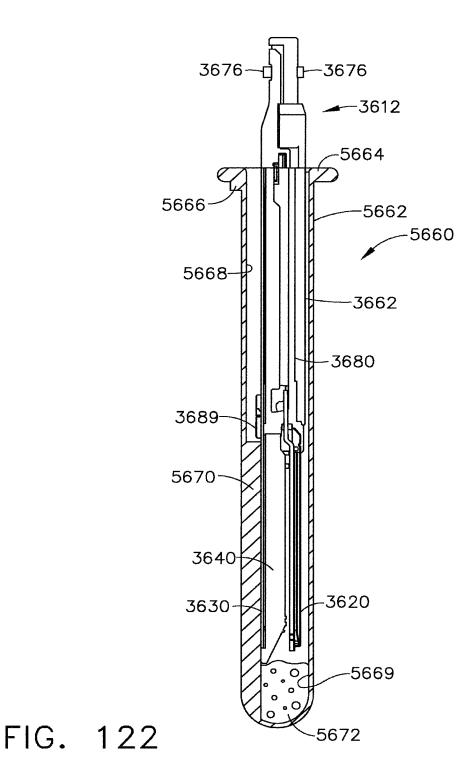
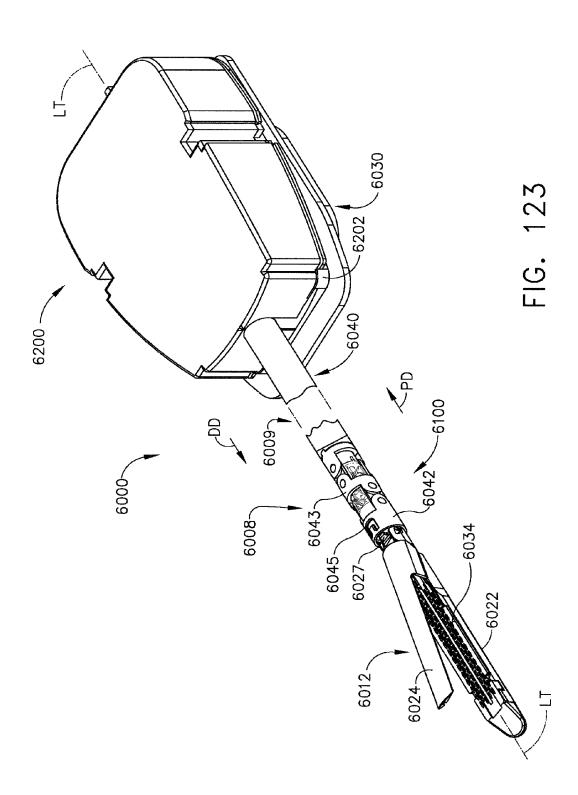
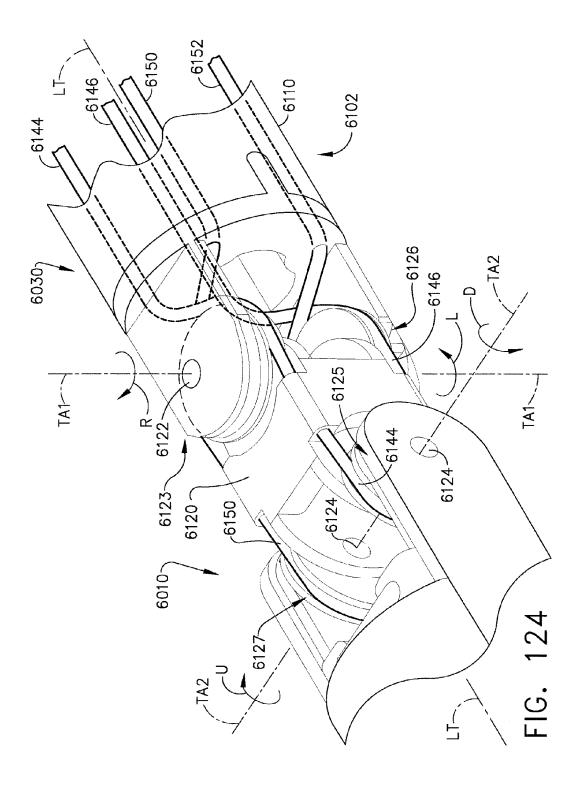
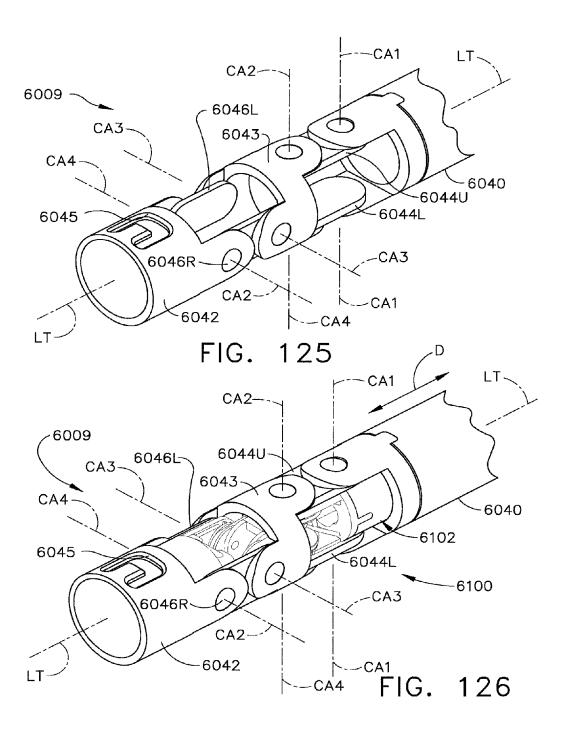






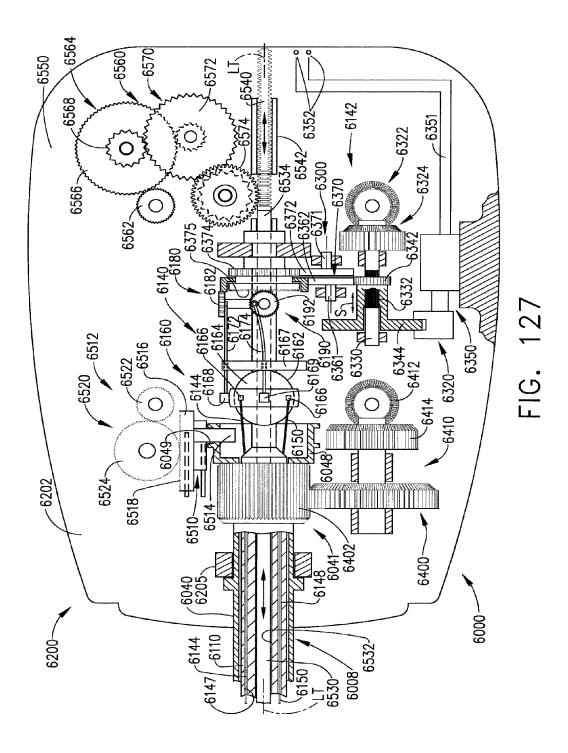

FIG. 111

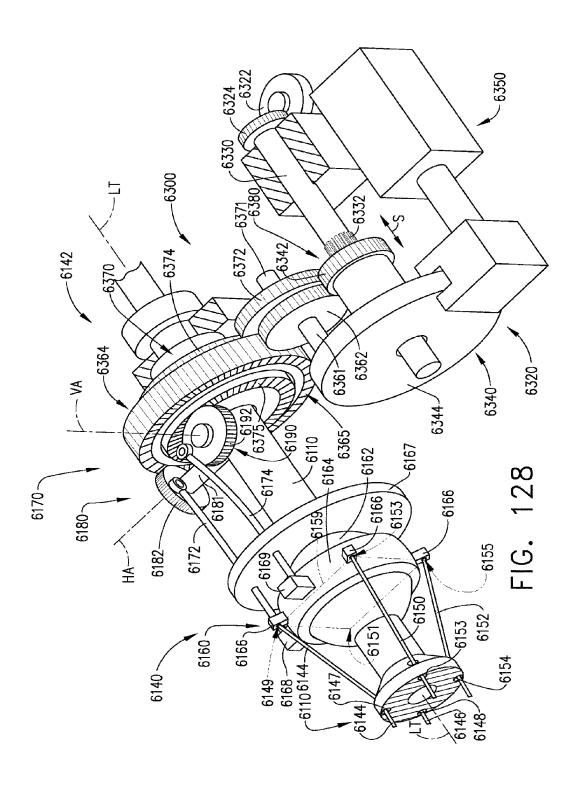


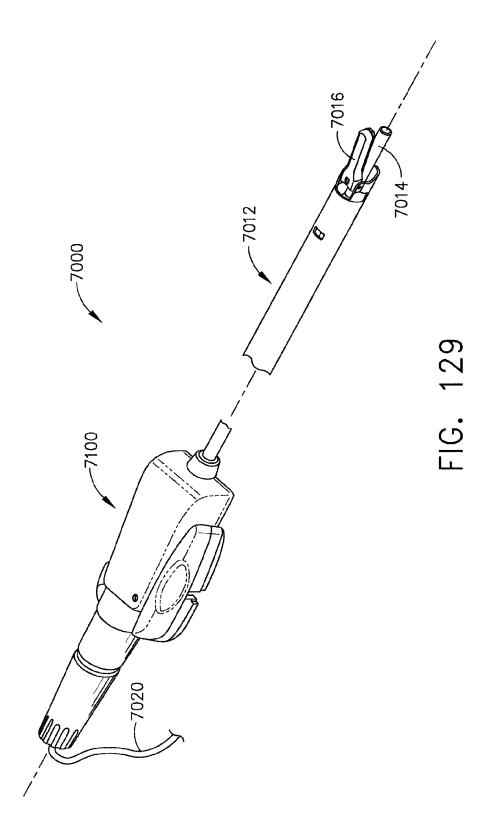


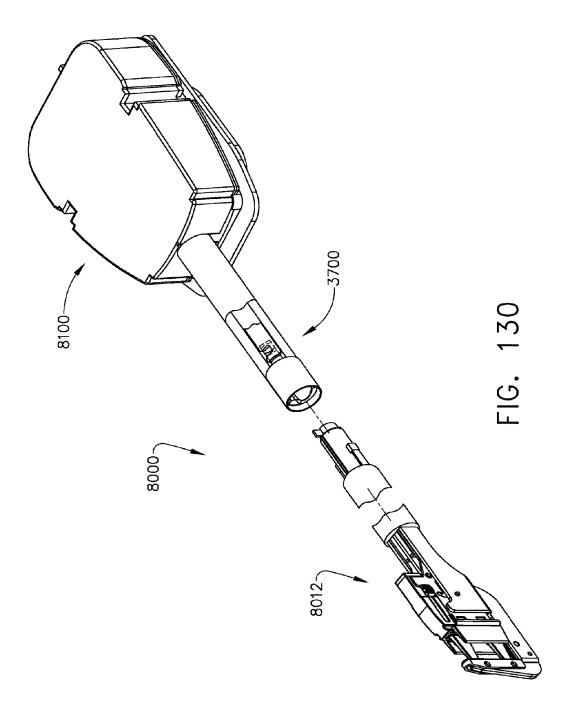



FIG. 121







DETACHABLE MOTOR POWERED SURGICAL INSTRUMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 13/832,522, entitled DETACHABLE MOTOR POWERED SURGICAL INSTRUMENT, filed on Mar. 15, 2013, now 10 U.S. Patent Publication No. 2013/0200132, which is a continuation application claiming priority under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/118,210, entitled ROBOTICALLY-CONTROLLED DISPOSABLE MOTOR-DRIVEN LOADING UNIT, filed on May 27, 2011, now U.S. 15 Pat. No. 8,752,749, which is a continuation-in-part application claiming priority under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/856,099, entitled DISPOSABLE MOTOR-DRIVEN LOADING UNIT FOR USE WITH A SURGICAL CUTTING AND STAPLING APPARATUS, 20 filed on Aug. 13, 2010, now U.S. Pat. No. 8,196,795, which is a continuation application claiming priority under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/031,628, entitled DISPOSABLE MOTOR-DRIVEN LOADING UNIT FOR USE WITH A SURGICAL CUTTING AND STAPLING 25 APPARATUS, filed on Feb. 14, 2008, now U.S. Pat. No. 7,793,812, the entire disclosures of which are hereby incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates in general to endoscopic surgical instruments including, but not limited to, surgical cutting and stapling apparatuses that have disposable loading units that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to such disposable loading units.

BACKGROUND

Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into 45 a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).

Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies 55 lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members supports a staple cartridge 60 that has at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument commonly includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the 65 staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.

2

One type of surgical stapling apparatus is configured to operate with disposable loading units (DLU's) that are constructed to support a staple cartridge and knife assembly therein. Once the procedure is completed, the entire DLU is discarded. Such instruments that are designed to accommodate DLU's purport to offer the advantage of a "fresh" knife blade for each firing of the instrument. Examples of such surgical stapling apparatuses and DLU's are disclosed in U.S. Pat. No. 5,865,361, entitled SURGICAL STAPLING APPARATUS, which issued on Feb. 2, 1999, the disclosure of which is herein incorporated by reference in its entirety.

Such prior disposable loading units, however, require the clinician to continuously ratchet the handle to fire the staples and cut the tissue. There is a need for a surgical stapling apparatus configured for use with a disposable loading unit that is driven by a motor contained in the disposable loading unit.

SUMMARY

In accordance with at least one embodiment, a disposable loading unit configured to be operably attached to a surgical instrument which is configured to selectively generate at least one control motion for the operation of the disposable loading unit is provided. The disposable loading unit may comprise a carrier operably supporting a cartridge assembly therein, an anvil supported relative to the carrier and being movable from an open position to closed positions upon application of at least one control motion thereto, and a housing coupled to the carrier, the housing including means for removably attaching the housing to the surgical instrument. The disposable loading unit may further comprise a rotary drive at least partially supported within the housing and a motor supported within the housing and operably interfacing with the rotary drive to selectively apply a rotary motion thereto, wherein the motor is configured to receive power from a power source such that the motor can only selectively receive power from the power source when the means for removably attaching the housing to the surgical instrument is operably coupled to the surgical instrument. The disposable loading unit may further comprise a linear member coupled with the rotary drive which moves axially upon the application of a rotary motion thereto from the motor.

In accordance with at least one embodiment, a stapling sub-system configured to be operably engaged with a surgical instrument system is provided. The stapling sub-system may comprise a staple cartridge carrier, a staple cartridge assembly supported by the staple cartridge carrier, and an anvil supported relative to the staple cartridge carrier and movable from an open position to a closed position. The stapling sub-system may further comprise a housing, wherein the staple cartridge carrier extends from the housing, and wherein the housing comprises a housing connector removably attachable to the surgical instrument system. The stapling subsystem may further comprise a rotary drive system comprising a rotary shaft and a translatable drive member operably engaged with the rotary shaft, wherein the translatable drive member is selectively translatable through the staple cartridge assembly from a start position to an end position when a rotary motion is applied to the rotary shaft. The rotary drive system may further comprise an electric motor operably interfacing with the rotary shaft to selectively apply the rotary motion to the rotary shaft, wherein the electric motor is operably disconnected from a power source when the housing is not attached to the surgical instrument system, and wherein

the electric motor is operably connected to the power source when the housing is attached to the surgical instrument sys-

In accordance with at least one embodiment, a stapling attachment configured to be operably attached to a surgical 5 instrument system is provided. The stapling attachment may comprise a staple cartridge carrier, a staple cartridge body supported by the staple cartridge carrier, wherein the staple cartridge body comprises a proximal end and a distal end, and a plurality of staples removably stored in the staple cartridge 10 body. The stapling attachment may further comprise an anvil supported relative to the staple cartridge carrier and movable from an open position to a closed position, a housing, wherein the staple carridge carrier extends from the housing, and wherein the housing is removably attachable to the surgical 15 instrument system, and an electric motor configured to produce rotational motion, wherein the electric motor selectively receives power from a power source only when the housing is coupled to the surgical instrument system. The stapling attachment may further comprise drive means for converting 20 the rotational motion produced by the electric motor to translational motion to elect the staples from the staple cartridge

In accordance with at least one embodiment, a loading unit configured to be operably attached to a surgical instrument 25 unit of FIG. 1 with several components shown in full view for which is configured to selectively generate at least one control motion for the operation of the loading unit is provided. The loading unit may comprise an end effector, a housing including means for removably attaching the housing to the surgical instrument, and a rotary drive at least partially supported 30 within the housing. The loading unit may further comprise a motor supported within the housing and operably interfacing with the rotary drive to selectively apply a rotary motion thereto, wherein the motor is configured to receive power from a power source such that the motor can only selectively 35 receive power from the power source when the means for removably attaching the housing to the surgical instrument is operably coupled to the surgical instrument, and a linear member coupled with the rotary drive which moves axially upon the application of a rotary motion thereto from the 40 motor.

In accordance with at least one embodiment, a stapling sub-system configured to be operably engaged with a surgical instrument system is provided. The stapling sub-system may comprise a stapling portion, a housing, wherein the stapling 45 portion extends from the housing, and wherein the housing comprises a housing connector removably attachable to the surgical instrument system, and a rotary drive system. The rotary drive system may comprise a rotary shaft, a translatable drive member operably engaged with the rotary shaft, 50 wherein the translatable drive member is selectively translatable through the stapling portion from a start position to an end position when a rotary motion is applied to the rotary shaft, and an electric motor operably interfacing with the rotary shaft to selectively apply the rotary motion to the rotary 55 shaft, wherein the electric motor is operably disconnected from a power source when the housing is not attached to the surgical instrument system, and wherein the electric motor is operably connected to the power source when the housing is attached to the surgical instrument system.

In accordance with at least one embodiment, a stapling attachment configured to be operably attached to a surgical instrument system is provided. The stapling attachment may comprise a staple cartridge body comprising a proximal end and a distal end, a plurality of staples removably stored in the 65 staple cartridge body, and an anvil supported relative to the staple cartridge body. The stapling attachment may further

comprise a housing removably attachable to the surgical instrument system, an electric motor configured to produce rotational motion, wherein the electric motor selectively receives power from a power source only when the housing is coupled to the surgical instrument system, and drive means for converting the rotational motion produced by the electric motor to translational motion to elect the staples from the staple cartridge body.

These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of various embodiments of the invention given above, and the detailed description of the embodiments given below, serve to explain various principles of the present invention.

FIG. 1 is a perspective view of a disposable loading unit embodiment of the present invention coupled to a conventional surgical cutting and stapling apparatus;

FIG. 2 is a cross-sectional view of the disposable loading

FIG. 3 is a cross-sectional view of a proximal end of the disposable loading unit embodiment of FIGS. 1 and 2 with various components shown in full view for clarity;

FIG. 4 is a schematic of a circuit embodiment of the disposable loading unit of FIGS. 1-3;

FIG. 5 is a cross-sectional view of the disposable loading unit of FIGS. 1-3 when the disposable loading unit has been attached to the elongated body of the surgical instrument;

FIG. 6 is a schematic view of the circuit illustrating the position of various components of the disposable loading unit after it has been attached to the surgical instrument;

FIG. 7 is a cross-sectional view of the disposable loading unit of FIGS. 1-6 when the drive beam has been moved to the anvil closed position;

FIG. 8 is a schematic view of the circuit illustrating the position of various components of the disposable loading unit after the drive beam has been moved to the anvil closed position;

FIG. 9 is a cross-sectional view of the disposable loading unit of FIGS. 1-8 when the drive beam has been moved to its distal-most fired position;

FIG. 10 is a schematic view of the circuit illustrating the position of various components of the disposable loading unit after the drive beam has been moved to its distal-most fired

FIG. 11 is a cross-sectional view of the disposable loading unit of FIGS. 1-10 as the drive beam is being returned to a starting position;

FIG. 12 is a schematic view of the circuit illustrating the position of various components of the disposable loading unit as the drive beam is being returned to a start position;

FIG. 13 is a perspective view of one robotic controller embodiment;

FIG. 14 is a perspective view of one robotic surgical arm cart/manipulator of a robotic system operably supporting a plurality of surgical tool embodiments of the present invention;

FIG. 15 is a side view of the robotic surgical arm cart/ manipulator depicted in FIG. 14;

FIG. 16 is a perspective view of an exemplary cart structure with positioning linkages for operably supporting robotic

manipulators that may be used with various surgical tool embodiments of the present invention;

- FIG. 17 is a perspective view of a surgical tool embodiment of the present invention;
- FIG. 18 is an exploded assembly view of an adapter and 5 tool holder arrangement for attaching various surgical tool embodiments to a robotic system;
 - FIG. 19 is a side view of the adapter shown in FIG. 18;
 - FIG. 20 is a bottom view of the adapter shown in FIG. 18;
 - FIG. 21 is a top view of the adapter of FIGS. 18 and 19;
- FIG. 22 is a partial bottom perspective view of the surgical tool embodiment of FIG. 17;
- FIG. 23 is a partial exploded view of a portion of an articulatable surgical end effector embodiment of the present inven-
- FIG. 24 is a perspective view of the surgical tool embodiment of FIG. 22 with the tool mounting housing removed;
- FIG. 25 is a rear perspective view of the surgical tool embodiment of FIG. 22 with the tool mounting housing removed:
- FIG. 26 is a front perspective view of the surgical tool embodiment of FIG. 22 with the tool mounting housing removed:
- FIG. 27 is a partial exploded perspective view of the surgical tool embodiment of FIG. 26;
- FIG. 28 is a partial cross-sectional side view of the surgical tool embodiment of FIG. 22;
- FIG. 29 is an enlarged cross-sectional view of a portion of the surgical tool depicted in FIG. 28;
- FIG. 30 is an exploded perspective view of a portion of the 30 tool mounting portion of the surgical tool embodiment depicted in FIG. 22;
- FIG. 31 is an enlarged exploded perspective view of a portion of the tool mounting portion of FIG. 30;
- elongated shaft assembly of the surgical tool of FIG. 22;
- FIG. 33 is a side view of a half portion of a closure nut embodiment of a surgical tool embodiment of the present invention;
- FIG. 34 is a perspective view of another surgical tool 40 embodiment of the present invention;
- FIG. 35 is a cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 34 with the anvil in the open position and the closure clutch assembly in a neutral position; 45
- FIG. 36 is another cross-sectional side view of the surgical end effector and elongated shaft assembly shown in FIG. 35 with the clutch assembly engaged in a closure position;
- FIG. 37 is another cross-sectional side view of the surgical end effector and elongated shaft assembly shown in FIG. 35 50 with the clutch assembly engaged in a firing position;
- FIG. 38 is a top view of a portion of a tool mounting portion embodiment of the present invention;
- FIG. 39 is a perspective view of another surgical tool embodiment of the present invention;
- FIG. 40 is a cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 39 with the anvil in the open position;
- FIG. 41 is another cross-sectional side view of a portion of 60 the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 39 with the anvil in the closed position;
- FIG. 42 is a perspective view of a closure drive nut and portion of a knife bar embodiment of the present invention;
- FIG. 43 is a top view of another tool mounting portion embodiment of the present invention;

6

- FIG. 44 is a perspective view of another surgical tool embodiment of the present invention;
- FIG. 45 is a cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 44 with the anvil in the open position;
- FIG. 46 is another cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 45 with the anvil in the closed position;
- FIG. 47 is a cross-sectional view of a mounting collar embodiment of a surgical tool embodiment of the present invention showing the knife bar and distal end portion of the closure drive shaft;
- FIG. 48 is a cross-sectional view of the mounting collar embodiment of FIG. 47;
- FIG. 49 is a top view of another tool mounting portion embodiment of another surgical tool embodiment of the present invention;
- FIG. 49A is an exploded perspective view of a portion of a gear arrangement of another surgical tool embodiment of the present invention;
- FIG. 49B is a cross-sectional perspective view of the gear arrangement shown in FIG. 49A;
- FIG. 50 is a cross-sectional side view of a portion of a surgical end effector and elongated shaft assembly of another surgical tool embodiment of the present invention employing a pressure sensor arrangement with the anvil in the open position;
- FIG. 51 is another cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 50 with the anvil in the closed position;
- FIG. 52 is a side view of a portion of another surgical tool FIG. 32 is a partial cross-sectional view of a portion of the 35 embodiment of the present invention in relation to a tool holder portion of a robotic system with some of the components thereof shown in cross-section;
 - FIG. 53 is a side view of a portion of another surgical tool embodiment of the present invention in relation to a tool holder portion of a robotic system with some of the components thereof shown in cross-section;
 - FIG. 54 is a side view of a portion of another surgical tool embodiment of the present invention with some of the components thereof shown in cross-section;
 - FIG. 55 is a side view of a portion of another surgical end effector embodiment of a portion of a surgical tool embodiment of the present invention with some components thereof shown in cross-section;
 - FIG. 56 is a side view of a portion of another surgical end effector embodiment of a portion of a surgical tool embodiment of the present invention with some components thereof shown in cross-section;
 - FIG. 57 is a side view of a portion of another surgical end effector embodiment of a portion of a surgical tool embodi-55 ment of the present invention with some components thereof shown in cross-section;
 - FIG. 58 is an enlarged cross-sectional view of a portion of the end effector of FIG. 57;
 - FIG. 59 is another cross-sectional view of a portion of the end effector of FIGS. 57 and 58;
 - FIG. 60 is a cross-sectional side view of a portion of a surgical end effector and elongated shaft assembly of another surgical tool embodiment of the present invention with the anvil in the open position;
 - FIG. 61 is an enlarged cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of the surgical tool embodiment of FIG. 60;

FIG. 62 is another cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly of FIGS. 60 and 61 with the anvil thereof in the closed position;

FIG. 63 is an enlarged cross-sectional side view of a portion of the surgical end effector and elongated shaft assembly 5 of the surgical tool embodiment of FIGS. 60-62;

FIG. 64 is a top view of a tool mounting portion embodiment of a surgical tool embodiment of the present invention;

FIG. 65 is a perspective assembly view of another surgical tool embodiment of the present invention;

FIG. 66 is a front perspective view of a disposable loading unit arrangement that may be employed with various surgical tool embodiments of the present invention;

FIG. 67 is a rear perspective view of the disposable loading unit of FIG. 66;

FIG. 68 is a bottom perspective view of the disposable loading unit of FIGS. 66 and 67;

FIG. 69 is a bottom perspective view of another disposable loading unit embodiment that may be employed with various surgical tool embodiments of the present invention;

FIG. 70 is an exploded perspective view of a mounting portion of a disposable loading unit depicted in FIGS. 66-68;

FIG. 71 is a perspective view of a portion of a disposable loading unit and an elongated shaft assembly embodiment of a surgical tool embodiment of the present invention with the 25 effector of FIG. 103 taken along line 95-95 in FIG. 94; disposable loading unit in a first position;

FIG. 72 is another perspective view of a portion of the disposable loading unit and elongated shaft assembly of FIG. 71 with the disposable loading unit in a second position;

FIG. 73 is a cross-sectional view of a portion of the disposable loading unit and elongated shaft assembly embodiment depicted in FIGS. 71 and 72;

FIG. 74 is another cross-sectional view of the disposable loading unit and elongated shaft assembly embodiment depicted in FIGS. 71-73;

FIG. 75 is a partial exploded perspective view of a portion of another disposable loading unit embodiment and an elongated shaft assembly embodiment of a surgical tool embodiment of the present invention;

of another disposable loading unit embodiment and an elongated shaft assembly embodiment of a surgical tool embodiment of the present invention;

FIG. 77 is another partial exploded perspective view of the disposable loading unit embodiment and an elongated shaft 45 assembly embodiment of FIG. 76;

FIG. 78 is a top view of another tool mounting portion embodiment of a surgical tool embodiment of the present

FIG. 79 is a side view of another surgical tool embodiment 50 of the present invention with some of the components thereof shown in cross-section and in relation to a robotic tool holder of a robotic system;

FIG. 80 is an exploded assembly view of a surgical end effector embodiment that may be used in connection with 55 various surgical tool embodiments of the present invention;

FIG. **81** is a side view of a portion of a cable-driven system for driving a cutting instrument employed in various surgical end effector embodiments of the present invention;

FIG. 82 is a top view of the cable-driven system and cutting 60 instrument of FIG. 81;

FIG. 83 is a top view of a cable drive transmission embodiment of the present invention in a closure position;

FIG. 84 is another top view of the cable drive transmission embodiment of FIG. 83 in a neutral position;

FIG. 85 is another top view of the cable drive transmission embodiment of FIGS. 83 and 84 in a firing position;

FIG. 86 is a perspective view of the cable drive transmission embodiment in the position depicted in FIG. 83;

FIG. 87 is a perspective view of the cable drive transmission embodiment in the position depicted in FIG. 84;

FIG. 88 is a perspective view of the cable drive transmission embodiment in the position depicted in FIG. 85;

FIG. 89 is a perspective view of another surgical tool embodiment of the present invention;

FIG. 90 is a side view of a portion of another cable-driven system embodiment for driving a cutting instrument employed in various surgical end effector embodiments of the present invention;

FIG. 91 is a top view of the cable-driven system embodiment of FIG. 90;

FIG. 92 is a top view of a tool mounting portion embodiment of another surgical tool embodiment of the present invention;

FIG. 93 is a top cross-sectional view of another surgical 20 tool embodiment of the present invention;

FIG. 94 is a cross-sectional view of a portion of a surgical end effector embodiment of a surgical tool embodiment of the present invention;

FIG. 95 is a cross-sectional end view of the surgical end

FIG. 96 is a perspective view of the surgical end effector of FIGS. 94 and 95 with portions thereof shown in cross-section;

FIG. 97 is a side view of a portion of the surgical end effector of FIGS. 94-96;

FIG. 98 is a perspective view of a sled assembly embodiment of various surgical tool embodiments of the present invention;

FIG. 99 is a cross-sectional view of the sled assembly embodiment of FIG. 98 and a portion of the elongated chan-35 nel of FIG. 97;

FIGS. 100-105 diagrammatically depict the sequential firing of staples in a surgical tool embodiment of the present

FIG. 106 is a partial perspective view of a portion of a FIG. 76 is a partial exploded perspective view of a portion 40 surgical end effector embodiment of the present invention;

FIG. 107 is a partial cross-sectional perspective view of a portion of a surgical end effector embodiment of a surgical tool embodiment of the present invention;

FIG. 108 is another partial cross-sectional perspective view of the surgical end effector embodiment of FIG. 107 with a sled assembly axially advancing therethrough;

FIG. 109 is a perspective view of another sled assembly embodiment of another surgical tool embodiment of the present invention;

FIG. 110 is a partial top view of a portion of the surgical end effector embodiment depicted in FIGS. 107 and 108 with the sled assembly axially advancing therethrough;

FIG. 111 is another partial top view of the surgical end effector embodiment of FIG. 110 with the top surface of the surgical staple cartridge omitted for clarity;

FIG. 112 is a partial cross-sectional side view of a rotary driver embodiment and staple pusher embodiment of the surgical end effector depicted in FIGS. 107 and 108;

FIG. 113 is a perspective view of an automated reloading system embodiment of the present invention with a surgical end effector in extractive engagement with the extraction system thereof;

FIG. 114 is another perspective view of the automated reloading system embodiment depicted in FIG. 113;

FIG. 115 is a cross-sectional elevational view of the automated reloading system embodiment depicted in FIGS. 113 and 114;

125

9

FIG. 116 is another cross-sectional elevational view of the automated reloading system embodiment depicted in FIGS. 113-115 with the extraction system thereof removing a spent surgical staple cartridge from the surgical end effector;

FIG. 117 is another cross-sectional elevational view of the 5 automated reloading system embodiment depicted in FIGS. 113-116 illustrating the loading of a new surgical staple cartridge into a surgical end effector;

FIG. 118 is a perspective view of another automated reloading system embodiment of the present invention with 10 some components shown in cross-section;

FIG. 119 is an exploded perspective view of a portion of the automated reloading system embodiment of FIG. 118;

FIG. 120 is another exploded perspective view of the portion of the automated reloading system embodiment depicted 15 in FIG. 119:

FIG. 121 is a cross-sectional elevational view of the automated reloading system embodiment of FIGS. 118-120;

FIG. 122 is a cross-sectional view of an orientation tube embodiment supporting a disposable loading unit therein;

FIG. 123 is a perspective view of another surgical tool embodiment of the present invention;

FIG. **124** is a partial perspective view of an articulation joint embodiment of a surgical tool embodiment of the present invention;

FIG. 125 is a perspective view of a closure tube embodiment of a surgical tool embodiment of the present invention;

FIG. 126 is a perspective view of the closure tube embodiment of FIG. 125 assembled on the articulation joint embodiment of FIG. 124;

FIG. 127 is a top view of a portion of a tool mounting portion embodiment of a surgical tool embodiment of the present invention;

FIG. **128** is a perspective view of an articulation drive assembly embodiment employed in the tool mounting portion ³⁵ embodiment of FIG. **127**;

FIG. 129 is a perspective view of another surgical tool embodiment of the present invention; and

FIG. 130 is a perspective view of another surgical tool embodiment of the present invention.

DETAILED DESCRIPTION

Applicant of the present application also owns the following patent applications that have been filed on May 27, 2011 45 and which are each herein incorporated by reference in their respective entireties:

- U.S. patent application Ser. No. 13/118,259, entitled SUR-GICAL INSTRUMENT WITH WIRELESS COMMUNICATION BETWEEN A CONTROL UNIT OF A 50 ROBOTIC SYSTEM AND REMOTE SENSOR, U.S. Patent Application Publication No. US 2011-0295270 A1;
- U.S. patent application Ser. No. 13/118,194, entitled ROBOTICALLY-CONTROLLED ENDOSCOPIC ACCESSORY CHANNEL, U.S. Patent Application Publication No. US 2011-0295242 A1;
- U.S. patent application Ser. No. 13/118,253, entitled ROBOTICALLY-CONTROLLED MOTORIZED SURGICAL INSTRUMENT, U.S. Patent Application 60 Publication No. US 2011-0295269 A1;
- U.S. patent application Ser. No. 13/118,278, entitled ROBOTICALLY-CONTROLLED SURGICAL STAPLING DEVICES THAT PRODUCE FORMED STAPLES HAVING DIFFERENT LENGTHS, U.S. 65 Patent Application Publication No. US 2011-0290851 A1;

10

U.S. patent application Ser. No. 13/118,190, entitled ROBOTICALLY-CONTROLLED MOTORIZED CUTTING AND FASTENING INSTRUMENT, U.S. Patent Application Publication No. US 2011-0288573 A1;

U.S. patent application Ser. No. 13/118,223, entitled ROBOTICALLY-CONTROLLED SHAFT BASED ROTARY DRIVE SYSTEMS FOR SURGICAL INSTRUMENTS, U.S. Patent Application Publication No. US 2011-0290854 A1;

U.S. patent application Ser. No. 13/118,263, entitled ROBOTICALLY-CONTROLLED SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, U.S. Patent Application Publication No. US 2011-0295295 A1;

U.S. patent application Ser. No. 13/118,272, entitled ROBOTICALLY-CONTROLLED SURGICAL INSTRUMENT WITH FORCE FEEDBACK CAPABILITIES, U.S. Patent Application Publication No. US 2011-0290856 A1;

U.S. patent application Ser. No. 13/118,246, entitled ROBOTICALLY-DRIVEN SURGICAL INSTRUMENT WITH E-BEAM DRIVER, U.S. Patent Application Publication No. US 2011-0290853 A1; and

U.S. patent application Ser. No. 13/118,241, entitled SUR-GICAL STAPLING INSTRUMENTS WITH ROTAT-ABLE STAPLE DEPLOYMENT ARRANGEMENTS,
 U.S. Patent Application Publication No. US 2012-0298719 A1.

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings.

Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims.

The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention

Uses of the phrases "in various embodiments," "in some embodiments," "in one embodiment", or "in an embodiment", or the like, throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics of one or more embodiments may be combined in any suitable manner in one or more other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.

Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIG. 1 depicts a disposable loading unit 16 of the present invention that is coupled to a conventional surgical cutting and stapling apparatus 10. The construction and general operation of a cutting and stapling apparatus 10 is described in U.S. Pat. No. 5,865, 361, the disclosure of which has been herein incorporated by reference. Thus, the present Detailed Description will not discuss the various components of the apparatus 10 and their operation of the disposable loading unit 16 of the present invention.

As the present Detailed Description proceeds, it will be appreciated that the terms "proximal" and "distal" are used

herein with reference to a clinician gripping a handle assembly 12 of the surgical stapling apparatus 10 to which the disposable loading unit 16 is attached. Thus, the disposable loading unit 16 is distal with respect to the more proximal handle assembly 12. It will be further appreciated that, for 5 convenience and clarity, spatial terms such as "vertical", "horizontal", "up", "down", "right", and "left" are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.

As can be seen in FIG. 1, the disposable loading unit 16 may generally comprise a tool assembly 17 for performing surgical procedures such as cutting tissue and applying staples on each side of the cut. The tool assembly 17 may include a cartridge assembly 18 that includes a staple car- 15 tridge 220 that is supported in a carrier 216. An anvil assembly 20 may be pivotally coupled to the carrier 216 in a known manner for selective pivotal travel between open and closed positions. The anvil assembly 20 includes an anvil portion 204 that has a plurality of staple deforming concavities (not 20 shown) formed in the undersurface thereof. The staple cartridge 220 houses a plurality of pushers or drivers (not shown) that each have a staple or staples (not shown) supported thereon. An actuation sled 234 is supported within the tool assembly 17 and is configured to drive the pushers and staples 25 in the staple cartridge 220 in a direction toward the anvil assembly 20 as the actuation sled 234 is driven from the proximal end of the tool assembly 17 to the distal end 220. See FIG. 2.

The disposable loading unit 16 may further include an axial 30 drive assembly 212 that comprises a drive beam 266 that may be constructed from a single sheet of material or, preferably, from multiple stacked sheets. However, the drive beam 266 may be constructed from other suitable material configurations. The distal end of drive beam 266 may include a vertical 35 support strut 271 which supports a knife blade 280 and an abutment surface 283 which engages the central portion of actuation sled 234 during a stapling procedure. Knife blade 280 may be generally positioned to translate slightly behind actuation sled 234 through a central longitudinal slot in staple 40 cartridge 220 to form an incision between rows of stapled body tissue. A retention flange 284 may project distally from vertical strut 271 and support a camming pin or pins 286 at its distal end. Camming pin 286 may be dimensioned and configured to engage camming surface 209 on anvil portion 204 45 to clamp anvil portion 204 against body tissue. See FIGS. 5 and 7. In addition, a leaf spring (not shown) may be provided between the proximal end of the anvil portion 204 and the distal end portion of the housing 200 to bias the anvil assembly 20 to a normally open position. The carrier 216 may also 50 have an elongated bottom slot therethrough through which a portion of the vertical support strut 271 extends to have a support member 287 attached thereto

As can also be seen in FIG. 1, the disposable loading unit 16 may also have a housing portion 200 that is adapted to snap 55 onto or otherwise be attached to the carrier 216. The proximal end 500 of housing 200 may include engagement nubs 254 for releasably engaging elongated body 14 of a surgical stapling apparatus. Nubs 254 form a bayonet type coupling with the distal end of the elongated body portion 14 of the surgical 60 stapling apparatus as described in U.S. Pat. No. 5,865,361.

The housing 200 may further include a switch portion 520 that movably houses a battery 526 therein. More specifically and with reference to FIG. 3, the switch portion 520 of the housing 200 defines a battery cavity 522 that movably supports a battery holder 524 that houses a battery 526 therein. As can be seen in FIG. 3, a first battery contact 528 is supported

in electrical contact with the battery 526 and protrudes out through the battery holder 524 for sliding engagement with the inside wall 523 of the battery cavity 522. Similarly, a second battery contact 530 is mounted in electrical contact with the battery 526 and also protrudes out of the battery holder 524 to slide along the inside wall 523 of the battery cavity 522. The battery holder 524 has a control rod socket 532 therein configured to receive the distal end 276 of control rod 52 when the proximal end of disposable loading unit 16 is coupled to the elongated body 14 of surgical stapling apparatus 10. As can also be seen in FIG. 3, a series of contacts 540, 542, 544 may be oriented within the wall 523 for contact with the battery contacts 530. The purpose of the contacts 540, 542, and 544 will be discussed in further detail below. As can also be seen in FIG. 3, a biasing member or switch spring 550 is positioned within the battery cavity 522 to bias the battery holder 524 in the proximal direction "PD" such that when the disposable reload 16 is not attached to the elongated body 14, the battery holder 524 is biased to its proximal-most position shown in FIG. 3. When retained in that "pre-use" or 'disconnected' position by spring 550, the battery contacts **528** and **530** do not contact any of the contacts **540**, **542**, **544** within the battery cavity 522 to prevent the battery 526 from being drained during non-use.

As can also be seen in FIG. 3, the housing 200 may further have a motor cavity 560 therein that houses a motor 562 and a gear box 564. The gear box 564 has an output shaft 566 that protrudes through a hole 572 in a proximal bulkhead 570 formed in the housing 200. See FIG. 5. The output shaft 566 is keyed onto or otherwise non-rotatably coupled to a thrust disc 580. As can be seen in FIG. 5, the thrust disc 580 is rotatably supported within a thrust disc cavity 582 formed between the proximal bulkhead 570 and a distal bulkhead 590 formed in the housing 200. In addition, the thrust disc 580 is rotatably supported between a proximal thrust bearing 583 and a distal thrust bearing 584 as shown. As can also be seen in FIG. 5, the thrust disc 580 may be formed on a proximal end of a drive screw 600 that threadedly engages a drive nut 610 that is supported within an engagement section 270 formed on the distal end of the drive beam 266. In various embodiments, the engagement section 270 may include a pair of engagement fingers 270a and 270b that are dimensioned and configured to be received within a slot in the drive nut 610 to non-rotatably affix the drive nut 610 to the drive beam 266. Thus, rotation of the drive screw 600 within the drive nut 610 will drive the drive beam 266 in the distal direction "DD" or in the proximal direction "PD" depending upon the direction of rotation of the drive screw 600.

The disposable loading unit 16 may further include a return switch 630 that is mounted in the housing 200 and is adapted to be actuated by the knife nut 610. As can also be seen in FIG. 5, a switch 640 is mounted in the housing 200 and is also oriented to be actuated by the knife nut 610 to indicate when the anvil assembly 20 has been closed. A switch 650 is mounted in the housing 200 and is also adapted to be actuated by the knife nut 610 to indicate that the axial drive assembly 212 has moved to is finished position. The specific operations of switches 630, 640, 650 will be discussed in further detail below.

FIG. 4 illustrates a circuit embodiment 700 of the present invention that illustrates the positions of various components of the disposable loading unit 16 of the present invention when in a "pre-use" condition. For example, the various components of the disposable loading unit 16 may be in this pre-use orientation when the unit 16 is being stored or shipped. As can be seen in that Figure, when in this orientation, the battery contacts 528 and 530 do not contact any of the

contacts 540, 542, 544 in the housing 200 which prevents the battery 526 from being drained during non-use.

FIGS. 5 and 6 illustrate the positions of various components of the disposable loading unit 16 after it has been coupled to the elongated body 14 of the surgical cutting and 5 stapling instrument 10. In particular, as can be seen in FIG. 5, the distal end 276 of the control rod 52 has been coupled to the battery holder 524. When the control rod 52 is attached to the battery holder 524, the battery holder 524 is moved in the distal direction "DD" against the spring 550 such that the 10 battery contacts 528, 530 are brought into contact with the return contacts 540 in the housing 200. Also, when in that position, the knife nut 610 actuates the return switch 630 into an open orientation. It will be appreciated that the return switch 630 is a normally closed switch that is actuated to the 15 open position by the knife nut 610. As shown in FIG. 6, when the return switch 630 is open, the motor 562 is not powered.

FIGS. 7 and 8 illustrate the positions of various components of the disposable loading unit 16 after the clinician has actuated the movable handle 24 (shown in FIG. 1) of the 20 surgical cutting and stapling instrument 10. As discussed in U.S. Pat. No. 5,865,361, when the movable handle **24** is initially moved toward the stationary handle member 22, the control rod 52 is caused to move in the distal direction "DD". As can be seen in FIG. 7, as the control rod 52 is initially 25 moved in the distal direction during the anvil close stroke, the battery holder 524 moves the battery 526 to a position wherein the battery contacts 528, 530 contact the anvil close contacts 542. Power is now permitted to flow from the battery **526** to the motor **562** which rotates the drive screw **600** and 30 causes the drive beam **266** to move distally. As the drive beam 266 moves distally in the "DD" direction, the camming pin 286 engages cam portion 209 of anvil portion 204 and causes the anvil assembly 20 to pivot to a closed position as illustrated in FIG. 7. As the drive beam 266 moves distally to the 35 anvil closed position, the knife nut 610 moves out of contact with the return switch 630 which permits the return switch to resume its normally open position. The knife nut 610 then actuates the anvil closed switch 640 and moves it to an open position. See FIG. 8. In various embodiments one or more 40 anvil closed lights 660 may be mounted in the housing 200 for providing a visual indication to the clinician that the anvil assembly 20 has been moved to the closed position.

When the clinician desires to fire the instrument 10 (i.e., actuate the instrument 10 to cause it to cut and staple tissue), 45 the clinician first depresses the plunger 82 of the firing lockout assembly 80 (FIG. 1) as discussed in U.S. Pat. No. 5,865, 361. Thereafter, movable handle 24 may be actuated. As the movable handle 24 is depressed, the control rod 52 moves the battery holder **524** and battery **526** to the position illustrated 50 in FIGS. 9 and 10. As can be seen in those Figures, when the battery 526 is moved into that position, the battery contacts 528, 530 are brought into contact with the fire contacts 544. The switch 650 is normally closed until it is actuated by the knife nut 610. Thus, when the battery contacts 528, 530 55 contact the firing contacts 544, power flows from the battery 526 to the motor 562 which drives the drive screw 600. As the drive screw 600 is rotated, the drive beam 266 and knife nut 610 are driven in the distal direction "DD" to advance actuation sled 234 through staple cartridge 220 to effect ejection of 60 staples and cutting of tissue. Once the drive beam 266 reaches the end of the firing stroke (i.e., all of the staples in the staple cartridge 220 have been fired), knife nut 610 is positioned to actuate the normally closed switch 650 and move it to an open position (illustrated in FIG. 10) which stops the flow of power 65 from the battery 526 to the motor 562. In various embodiments, a distal indication light or lights 670 may be mounted

14

on the housing 200 to provide an indication to the clinician that the drive beam 266 has reached its distal-most fired position.

To retract the drive beam 266, the clinician grasps the retract knobs 32 (shown in FIG. 1) on the handle assembly 12 and pulls them in the proximal direction "PD". The operation and construction of the retract knobs 32 is discussed in U.S. Pat. No. 5,865,361. Once the clinician moves the drive beam **266** a sufficient distance in the proximal direction "PD" so as to move the battery to contacts 540 (FIG. 11), power will be supplied through switch 630 to reverse the motor 562. Knife nut then releases switch 650. The motor 562 then drives the drive beam 266 distal to switch 630, which opens. The return switch 630 is also in its normally closed position thereby permitting power to flow to the motor 562 and rotate the drive screw 610 in an opposite direction to drive the drive beam 266 in the proximal direction "PD". Once the knife nut 610 actuates the knife return switch 630, the knife return switch 630 is moved to an open position thereby stopping flow of power from the battery 526 to the motor 562. In various embodiments, a starting light 700 may be mounted in the housing 200 to provide an indication that the drive beam 266 is in the starting position.

FIGS. 11 and 12 illustrate the positions of various components of the disposable loading unit 16 of the present invention when the distal end of the drive beam 266 and blade 280 inadvertently becomes jammed during the firing stroke (i.e., when the blade 280 is being distally advanced through the tissue clamped in the tool assembly 17). To address such occurrence, a current limiter 680 may be provided as shown in FIG. 12. The current limiter 680 serves to turn off the motor 562 when the amount of current that it is drawing exceeds a predetermined threshold. It will be understood that the amount of current that the motor 562 draws during a jam would increase over the amount of current drawn during normal firing operations. Once the current limiter 680 shuts down the motor 562, the clinician can retract the drive beam 266 by grasping the retract knobs 32 (shown in FIG. 1) on the handle assembly 12 and pulling them in the proximal direction "PD" and the motor 562 will drive the drive screw 600 in reverse in the manner described above. Thus, the current limiter 680 serves to stop the motor 562 when the axial drive assembly 212 encounters resistance that exceeds a predetermined amount of resistance which is associated with the predetermined maximum amount of current that the motor **562** should draw under normal operating circumstances. This feature also saves the battery power so the drive beam 266 can be retracted.

Thus, the disposable loading unit 16 of the present invention comprises a self-contained motor driven disposable loading unit that may be used in connection with conventional surgical cutting and stapling instruments that traditionally required the clinician to manually advance and retract the drive assembly and cutting blade of a disposable loading unit coupled thereto. Various embodiments of the disposable loading unit 16 may be constructed to facilitate the automatic retraction of the axial drive assembly should the blade encounter a predetermined amount of resistance.

While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore

intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed invention as defined by the appended claims.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference 5 herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material 10 incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated 15 material and the existing disclosure material.

The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made 20 by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.

Over the years a variety of minimally invasive robotic (or "telesurgical") systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Many of such systems are disclosed in the following U.S. patents which are each herein 30 incorporated by reference in their respective entirety: U.S. Pat. No. 5,792,135, entitled ARTICULATED SURGICAL INSTRUMENT FOR PERFORMING MINIMALLY INVA-SIVE SURGERY WITH ENHANCED DEXTERITY AND SENSITIVITY, which issued Aug. 11, 1998; U.S. Pat. No. 35 6,231,565, entitled ROBOTIC ARM DLUS FOR PER-FORMING SURGICAL TASKS, which issued May 15, 2001; U.S. Pat. No. 6,783,524, entitled ROBOTIC SURGI-CAL TOOL WITH ULTRASOUND CAUTERIZING AND CUTTING INSTRUMENT, which issued on Aug. 31, 2004; 40 U.S. Pat. No. 6,364,888, entitled ALIGNMENT OF MAS-TER AND SLAVE IN A MINIMALLY INVASIVE SURGI-CAL APPARATUS, which issued on Apr. 2, 2002; U.S. Pat. No. 7,524,320, entitled MECHANICAL ACTUATOR INTERFACE SYSTEM FOR ROBOTIC SURGICAL 45 TOOLS, which issued on Apr. 28, 2009; U.S. Pat. No. 7,691, 098, entitled PLATFORM LINK WRIST MECHANISM, which issued on Apr. 6, 2010; U.S. Pat. No. 7,806,891, entitled REPOSITIONING AND REORIENTATION OF MASTER/SLAVE RELATIONSHIP IN MINIMALLY 50 INVASIVE TELESURGERY, which issued on Oct. 5, 2010; and U.S. Pat. No. 7,824,401, entitled SURGICAL TOOL WITH WRITED MONOPOLAR ELECTROSURGICAL END EFFECTORS, which issued on Nov. 2, 2010. Many of such systems, however, have in the past been unable to gen- 55 erate the magnitude of forces required to effectively cut and

FIG. 13 depicts one version of a master controller 1001 that may be used in connection with a robotic arm slave cart 1100 of the type depicted in FIG. 14. Master controller 1001 and 60 robotic arm slave cart 1100, as well as their respective components and control systems are collectively referred to herein as a robotic system 1000. Examples of such systems and devices are disclosed in U.S. Pat. No. 7,524,320 which has been herein incorporated by reference. Thus, various 65 details of such devices will not be described in detail herein beyond that which may be necessary to understand various

embodiments and forms of the present invention. As is known, the master controller 1001 generally includes master controllers (generally represented as 1003 in FIG. 13) which are grasped by the surgeon and manipulated in space while the surgeon views the procedure via a stereo display 1002. The master controllers 1001 generally comprise manual input devices which preferably move with multiple degrees of freedom, and which often further have an actuatable handle for actuating tools (for example, for closing grasping saws, applying an electrical potential to an electrode, or the like).

16

As can be seen in FIG. 14, in one form, the robotic arm cart 1100 is configured to actuate a plurality of surgical tools, generally designated as 1200. Various robotic surgery systems and methods employing master controller and robotic arm cart arrangements are disclosed in U.S. Pat. No. 6,132, 368, entitled MULTI-COMPONENT TELEPRESENCE SYSTEM AND METHOD, which issued on Oct. 17, 2000, the full disclosure of which is incorporated herein by reference. In various forms, the robotic arm cart 1100 includes a base 1002 from which, in the illustrated embodiment, three surgical tools 1200 are supported. In various forms, the surgical tools 1200 are each supported by a series of manually articulatable linkages, generally referred to as set-up joints 1104, and a robotic manipulator 1106. These structures are herein illustrated with protective covers extending over much of the robotic linkage. These protective covers may be optional, and may be limited in size or entirely eliminated in some embodiments to minimize the inertia that is encountered by the servo mechanisms used to manipulate such devices, to limit the volume of moving components so as to avoid collisions, and to limit the overall weight of the cart 1100. Cart 1100 will generally have dimensions suitable for transporting the cart 1100 between operating rooms. The cart 1100 may be configured to typically fit through standard operating room doors and onto standard hospital elevators. In various forms, the cart 1100 would preferably have a weight and include a wheel (or other transportation) system that allows the cart 1100 to be positioned adjacent an operating table by a single attendant.

Referring now to FIG. 15, in at least one form, robotic manipulators 1106 may include a linkage 1108 that constrains movement of the surgical tool 1200. In various embodiments, linkage 1108 includes rigid links coupled together by rotational joints in a parallelogram arrangement so that the surgical tool 1200 rotates around a point in space 1110, as more fully described in issued U.S. Pat. No. 5.817. 084, entitled REMOTE CENTER POSITIONING DEVICE WITH FLEXIBLE DRIVE, which issued on Oct. 6, 1998, the full disclosure of which is herein incorporated by reference. The parallelogram arrangement constrains rotation to pivoting about an axis 1112a, sometimes called the pitch axis. The links supporting the parallelogram linkage are pivotally mounted to set-up joints 1104 (FIG. 14) so that the surgical tool 1200 further rotates about an axis 1112b, sometimes called the yaw axis. The pitch and yaw axes 1112a, 1112b intersect at the remote center 1114, which is aligned along a shaft 1208 of the surgical tool 1200. The surgical tool 1200 may have further degrees of driven freedom as supported by manipulator 1106, including sliding motion of the surgical tool 1200 along the longitudinal tool axis "LT-LT". As the surgical tool 1200 slides along the tool axis LT-LT relative to manipulator 1106 (arrow 1112c), remote center 1114 remains fixed relative to base 1116 of manipulator 1106. Hence, the entire manipulator is generally moved to re-position remote center 1114. Linkage 1108 of manipulator 1106 is driven by a series of motors 1120. These motors actively move linkage 1108 in response to commands from a processor of a control

system. As will be discussed in further detail below, motors 1120 are also employed to manipulate the surgical tool 1200.

An alternative set-up joint structure is illustrated in FIG. 16. In this embodiment, a surgical tool 1200 is supported by an alternative manipulator structure 1106' between two tissue 5 manipulation tools. Those of ordinary skill in the art will appreciate that various embodiments of the present invention may incorporate a wide variety of alternative robotic structures, including those described in U.S. Pat. No. 5,878,193, entitled AUTOMATED ENDOSCOPE SYSTEM FOR 10 OPTIMAL POSITIONING, which issued on Mar. 2, 1999, the full disclosure of which is incorporated herein by reference. Additionally, while the data communication between a robotic component and the processor of the robotic surgical system is primarily described herein with reference to com- 15 munication between the surgical tool 1200 and the master controller 1001, it should be understood that similar communication may take place between circuitry of a manipulator, a set-up joint, an endoscope or other image capture device, or the like, and the processor of the robotic surgical system for 20 component compatibility verification, component-type identification, component calibration (such as off-set or the like) communication, confirmation of coupling of the component to the robotic surgical system, or the like.

An exemplary non-limiting surgical tool 1200 that is well- 25 adapted for use with a robotic system 1000 that has a tool drive assembly 1010 (FIG. 18) that is operatively coupled to a master controller 1001 that is operable by inputs from an operator (i.e., a surgeon) is depicted in FIG. 17. As can be seen in that Figure, the surgical tool 1200 includes a surgical end 30 effector 2012 that comprises an endocutter. In at least one form, the surgical tool 1200 generally includes an elongated shaft assembly 2008 that has a proximal closure tube 2040 and a distal closure tube 2042 that are coupled together by an articulation joint 2011. The surgical tool 1200 is operably 35 coupled to the manipulator by a tool mounting portion, generally designated as 1300. The surgical tool 1200 further includes an interface 1230 which mechanically and electrically couples the tool mounting portion 1300 to the manipulator. One form of interface 1230 is illustrated in FIGS. 16-22. 40 In various embodiments, the tool mounting portion 1300 includes a tool mounting plate 1302 that operably supports a plurality of (four are shown in FIG. 22) rotatable body portions, driven discs or elements 1304, that each include a pair of pins 1306 that extend from a surface of the driven element 45 1304. One pin 1306 is closer to an axis of rotation of each driven elements 1304 than the other pin 1306 on the same driven element 1304, which helps to ensure positive angular alignment of the driven element 1304. Interface 1230 includes an adaptor portion 1240 that is configured to mount- 50 ingly engage the mounting plate 1302 as will be further discussed below. The adaptor portion 1240 may include an array of electrical connecting pins 1242 (FIG. 20) which may be coupled to a memory structure by a circuit board within the tool mounting portion 1300. While interface 1230 is 55 described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like.

As can be seen in FIGS. 18-21, the adapter portion 1240 60 generally includes a tool side 1244 and a holder side 1246. In various forms, a plurality of rotatable bodies 1250 are mounted to a floating plate 1248 which has a limited range of movement relative to the surrounding adaptor structure normal to the major surfaces of the adaptor 1240. Axial movement of the floating plate 1248 helps decouple the rotatable bodies 1250 from the tool mounting portion 1300 when the

levers 1303 along the sides of the tool mounting portion housing 1301 are actuated (See FIG. 17). Other mechanisms/arrangements may be employed for releasably coupling the tool mounting portion 1300 to the adaptor 1240. In at least one form, rotatable bodies 1250 are resiliently mounted to floating plate 1248 by resilient radial members which extend

18

into a circumferential indentation about the rotatable bodies 1250. The rotatable bodies 1250 can move axially relative to plate 1248 by deflection of these resilient structures. When disposed in a first axial position (toward tool side 1244) the rotatable bodies 1250 are free to rotate without angular limitation. However, as the rotatable bodies 1250 move axially

tation. However, as the rotatable bodies 1250 move axially toward tool side 1244, tabs 1252 (extending radially from the rotatable bodies 1250) laterally engage detents on the floating plates so as to limit angular rotation of the rotatable bodies 1250 about their axes. This limited rotation can be used to

help drivingly engage the rotatable bodies 1250 with drive pins 1272 of a corresponding tool holder portion 1270 of the robotic system 1000, as the drive pins 1272 will push the rotatable bodies 1250 into the limited rotation position until

the pins 1234 are aligned with (and slide into) openings 1256'. Openings 1256 on the tool side 1244 and openings 1256' on the holder side 1246 of rotatable bodies 1250 are configured to accurately align the driven elements 1304 (FIG. 22) of the tool mounting portion 1300 with the drive elements 1271 of

the tool holder 1270. As described above regarding inner and outer pins 1306 of driven elements 1304, the openings 1256, 1256' are at differing distances from the axis of rotation on their respective rotatable bodies 1250 so as to ensure that the alignment is not 180 degrees from its intended position. Additionally, each of the openings 1256 is slightly radially elongated so as to fittingly receive the pins 1306 in the circumfer-

ential orientation. This allows the pins 1306 to slide radially within the openings 1256, 1256' and accommodate some axial misalignment between the tool 1200 and tool holder 1270, while minimizing any angular misalignment and backlash between the drive and driven elements. Openings 1256 on the tool side 1244 are offset by about 90 degrees from the openings 1256' (shown in broken lines) on the holder side

1246, as can be seen most clearly in FIG. 21.

Various embodiments may further include an array of electrical connector pins 1242 located on holder side 1246 of adaptor 1240, and the tool side 1244 of the adaptor 1240 may include slots 1258 (FIG. 21) for receiving a pin array (not shown) from the tool mounting portion 1300. In addition to transmitting electrical signals between the surgical tool 1200 and the tool holder 1270, at least some of these electrical connections may be coupled to an adaptor memory device 1260 (FIG. 20) by a circuit board of the adaptor 1240.

A detachable latch arrangement 1239 may be employed to releasably affix the adaptor 1240 to the tool holder 1270. As used herein, the term "tool drive assembly" when used in the context of the robotic system 1000, at least encompasses various embodiments of the adapter 1240 and tool holder 1270 and which has been generally designated as 1010 in FIG. 18. For example, as can be seen in FIG. 18, the tool holder 1270 may include a first latch pin arrangement 1274 that is sized to be received in corresponding clevis slots 1241 provided in the adaptor 1240. In addition, the tool holder 1270 may further have second latch pins 1276 that are sized to be retained in corresponding latch clevises 1243 in the adaptor 1240. See FIG. 20. In at least one form, a latch assembly 1245 is movably supported on the adapter 1240 and is biasable between a first latched position wherein the latch pins 1276 are retained within their respective latch clevis 1243 and an unlatched position wherein the second latch pins 1276 may be into or removed from the latch clevises 1243. A spring or

springs (not shown) are employed to bias the latch assembly into the latched position. A lip on the tool side **1244** of adaptor **1240** may slidably receive laterally extending tabs of tool mounting housing **1301**.

Turning next to FIGS. 22-29, in at least one embodiment, 5 the surgical tool 1200 includes a surgical end effector 2012 that comprises in this example, among other things, at least one component 2024 that is selectively movable between first and second positions relative to at least one other component 2022 in response to various control motions applied thereto as 10 will be discussed in further detail below. In various embodiments, component 2022 comprises an elongated channel 2022 configured to operably support a surgical staple cartridge 2034 therein and component 2024 comprises a pivotally translatable clamping member, such as an anvil 2024. 15 Various embodiments of the surgical end effector 2012 are configured to maintain the anvil 2024 and elongated channel 2022 at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 2012. As can be seen in FIG. 28, the surgical end effector 2012 further 20 includes a cutting instrument 2032 and a sled 2033. The cutting instrument 2032 may be, for example, a knife. The surgical staple cartridge 2034 operably houses a plurality of surgical staples (not show) therein that are supported on movable staple drivers (not shown). As the cutting instrument 25 2032 is driven distally through a centrally-disposed slot (not shown) in the surgical staple cartridge 2034, it forces the sled 2033 distally as well. As the sled 2033 is driven distally, its "wedge-shaped" configuration contacts the movable staple drivers and drives them vertically toward the closed anvil 30 **2024**. The surgical staples are formed as they are driven into the forming surface located on the underside of the anvil 2024. The sled 2033 may be part of the surgical staple cartridge 2034, such that when the cutting instrument 2032 is retracted following the cutting operation, the sled 2033 does 35 not retract. The anvil 2024 may be pivotably opened and closed at a pivot point 2025 located at the proximal end of the elongated channel 2022. The anvil 2024 may also include a tab 2027 at its proximal end that interacts with a component of the mechanical closure system (described further below) to 40 facilitate the opening of the anvil 2024. The elongated channel 2022 and the anvil 2024 may be made of an electrically conductive material (such as metal) so that they may serve as part of an antenna that communicates with sensor(s) in the end effector, as described above. The surgical staple cartridge 45 2034 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 2034, as was also described above.

As can be seen in FIGS. 22-29, the surgical end effector 2012 is attached to the tool mounting portion 1300 by an 50 elongated shaft assembly 2008 according to various embodiments. As shown in the illustrated embodiment, the shaft assembly 2008 includes an articulation joint generally indicated as 2011 that enables the surgical end effector 2012 to be selectively articulated about an articulation axis AA-AA that 55 is substantially transverse to a longitudinal tool axis LT-LT. See FIG. 23. In other embodiments, the articulation joint is omitted. In various embodiments, the shaft assembly 2008 may include a closure tube assembly 2009 that comprises a proximal closure tube 2040 and a distal closure tube 2042 that are pivotably linked by a pivot links 2044 and operably supported on a spine assembly generally depicted as 2049. In the illustrated embodiment, the spine assembly 2049 comprises a distal spine portion 2050 that is attached to the elongated channel 2022 and is pivotally coupled to the proximal spine 65 portion 2052. The closure tube assembly 2009 is configured to axially slide on the spine assembly 2049 in response to

actuation motions applied thereto. The distal closure tube 2042 includes an opening 2045 into which the tab 2027 on the anvil 2024 is inserted in order to facilitate opening of the anvil 2024 as the distal closure tube 2042 is moved axially in the proximal direction "PD". The closure tubes 2040, 2042 may be made of electrically conductive material (such as metal) so that they may serve as part of the antenna, as described above. Components of the main drive shaft assembly (e.g., the drive shafts 2048, 2050) may be made of a nonconductive material (such as plastic).

20

In use, it may be desirable to rotate the surgical end effector 2012 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 1300 includes a rotational transmission assembly 2069 that is configured to receive a corresponding rotary output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 2008 (and surgical end effector 2012) about the longitudinal tool axis LT-LT. In various embodiments, for example, the proximal end 2060 of the proximal closure tube 2040 is rotatably supported on the tool mounting plate 1302 of the tool mounting portion 1300 by a forward support cradle 1309 and a closure sled 2100 that is also movably supported on the tool mounting plate 1302. In at least one form, the rotational transmission assembly 2069 includes a tube gear segment 2062 that is formed on (or attached to) the proximal end 2060 of the proximal closure tube 2040 for operable engagement by a rotational gear assembly 2070 that is operably supported on the tool mounting plate 1302. As can be seen in FIG. 25, the rotational gear assembly 2070, in at least one embodiment, comprises a rotation drive gear 2072 that is coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 1302 when the tool mounting portion 1300 is coupled to the tool drive assembly 1010. See FIG. 22. The rotational gear assembly 2070 further comprises a rotary driven gear 2074 that is rotatably supported on the tool mounting plate 1302 in meshing engagement with the tube gear segment 2062 and the rotation drive gear 2072. Application of a first rotary output motion from the tool drive assembly 1010 of the robotic system 1000 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 2072. Rotation of the rotation drive gear 2072 ultimately results in the rotation of the elongated shaft assembly 2008 (and the surgical end effector 2012) about the longitudinal tool axis LT-LT (represented by arrow "R" in FIG. 25). It will be appreciated that the application of a rotary output motion from the tool drive assembly 1010 in one direction will result in the rotation of the elongated shaft assembly 2008 and surgical end effector 2012 about the longitudinal tool axis LT-LT in a first direction and an application of the rotary output motion in an opposite direction will result in the rotation of the elongated shaft assembly 2008 and surgical end effector 2012 in a second direction that is opposite to the first direction.

In at least one embodiment, the closure of the anvil 2024 relative to the staple cartridge 2034 is accomplished by axially moving the closure tube assembly 2009 in the distal direction "DD" on the spine assembly 2049. As indicated above, in various embodiments, the proximal end 2060 of the proximal closure tube 2040 is supported by the closure sled 2100 which comprises a portion of a closure transmission, generally depicted as 2099. In at least one form, the closure sled 2100 is configured to support the closure tube 2009 on the tool mounting plate 1320 such that the proximal closure tube 2040 can rotate relative to the closure sled 2100, yet travel axially with the closure sled 2100. In particular, as can

be seen in FIG. 30, the closure sled 2100 has an upstanding tab 2101 that extends into a radial groove 2063 in the proximal end portion of the proximal closure tube 2040. In addition, as can be seen in FIGS. 27 and 30, the closure sled 2100 has a tab portion 2102 that extends through a slot 1305 in the 5 tool mounting plate 1302. The tab portion 2102 is configured to retain the closure sled 2100 in sliding engagement with the tool mounting plate 1302. In various embodiments, the closure sled 2100 has an upstanding portion 2104 that has a closure rack gear 2106 formed thereon. The closure rack gear 102106 is configured for driving engagement with a closure gear assembly 2110. See FIG. 27.

In various forms, the closure gear assembly 2110 includes a closure spur gear 2112 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter 15 side 1307 of the tool mounting plate 1302. See FIG. 22. Thus, application of a second rotary output motion from the tool drive assembly 1010 of the robotic system 1000 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 2112 when the tool mounting portion 20 1300 is coupled to the tool drive assembly 1010. The closure gear assembly 2110 further includes a closure reduction gear set 2114 that is supported in meshing engagement with the closure spur gear 2112. As can be seen in FIGS. 26 and 27, the closure reduction gear set 2114 includes a driven gear 2116 25 that is rotatably supported in meshing engagement with the closure spur gear 2112. The closure reduction gear set 2114 further includes a first closure drive gear 2118 that is in meshing engagement with a second closure drive gear 2120 that is rotatably supported on the tool mounting plate 1302 in 30 meshing engagement with the closure rack gear 2106. Thus, application of a second rotary output motion from the tool drive assembly 1010 of the robotic system 1000 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 2112 and the closure transmission 2110 35 and ultimately drive the closure sled 2100 and closure tube assembly 2009 axially. The axial direction in which the closure tube assembly 2009 moves ultimately depends upon the direction in which the second driven element 1304 is rotated. For example, in response to one rotary output motion received 40 from the tool drive assembly 1010 of the robotic system 1000, the closure sled 2100 will be driven in the distal direction "DD" and ultimately drive the closure tube assembly 1009 in the distal direction. As the distal closure tube 2042 is driven distally, the end of the closure tube segment 2042 will engage 45 a portion of the anvil 2024 and cause the anvil 2024 to pivot to a closed position. Upon application of an "opening" out put motion from the tool drive assembly 1010 of the robotic system 1000, the closure sled 2100 and shaft assembly 2008 will be driven in the proximal direction "PD". As the distal 50 closure tube 2042 is driven in the proximal direction, the opening 2045 therein interacts with the tab 2027 on the anvil 2024 to facilitate the opening thereof. In various embodiments, a spring (not shown) may be employed to bias the anvil to the open position when the distal closure tube 2042 has 55 been moved to its starting position. In various embodiments, the various gears of the closure gear assembly 2110 are sized to generate the necessary closure forces needed to satisfactorily close the anvil 2024 onto the tissue to be cut and stapled by the surgical end effector 2012. For example, the gears of 60 the closure transmission 2110 may be sized to generate approximately 70-120 pounds.

In various embodiments, the cutting instrument 2032 is driven through the surgical end effector 2012 by a knife bar 2200. See FIGS. 28 and 30. In at least one form, the knife bar 65 2200 may be fabricated from, for example, stainless steel or other similar material and has a substantially rectangular

cross-sectional shape. Such knife bar configuration is sufficiently rigid to push the cutting instrument 2032 through tissue clamped in the surgical end effector 2012, while still being flexible enough to enable the surgical end effector 2012 to articulate relative to the proximal closure tube 2040 and the proximal spine portion 2052 about the articulation axis AA-AA as will be discussed in further detail below. As can be seen in FIGS. 31 and 32, the proximal spine portion 2052 has a rectangular-shaped passage 2054 extending therethrough to provide support to the knife bar 2200 as it is axially pushed therethrough. The proximal spine portion 2052 has a proximal end 2056 that is rotatably mounted to a spine mounting bracket 2057 attached to the tool mounting plate 1032. See FIG. 30. Such arrangement permits the proximal spine portion 2052 to rotate, but not move axially, within the proximal closure tube 2040.

As shown in FIG. 28, the distal end 2202 of the knife bar 2200 is attached to the cutting instrument 2032. The proximal end 2204 of the knife bar 2200 is rotatably affixed to a knife rack gear 2206 such that the knife bar 2200 is free to rotate relative to the knife rack gear 2206. See FIG. 39. As can be seen in FIGS. 24-29, the knife rack gear 2206 is slidably supported within a rack housing 2210 that is attached to the tool mounting plate 1302 such that the knife rack gear 2206 is retained in meshing engagement with a knife gear assembly 2220. More specifically and with reference to FIG. 27, in at least one embodiment, the knife gear assembly 2220 includes a knife spur gear 2222 that is coupled to a corresponding third one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 1302. See FIG. 22. Thus, application of another rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding third driven element 1304 will cause rotation of the knife spur gear 2222. The knife gear assembly 2220 further includes a knife gear reduction set 2224 that includes a first knife driven gear 2226 and a second knife drive gear 2228. The knife gear reduction set 2224 is rotatably mounted to the tool mounting plate 1302 such that the firs knife driven gear 2226 is in meshing engagement with the knife spur gear 2222. Likewise, the second knife drive gear 2228 is in meshing engagement with a third knife drive gear 2230 that is rotatably supported on the tool mounting plate 1302 in meshing engagement with the knife rack gear 2206. In various embodiments, the gears of the knife gear assembly 2220 are sized to generate the forces needed to drive the cutting element 2032 through the tissue clamped in the surgical end effector 2012 and actuate the staples therein. For example, the gears of the knife drive assembly 2230 may be sized to generate approximately 40 to 100 pounds. It will be appreciated that the application of a rotary output motion from the tool drive assembly 1010 in one direction will result in the axial movement of the cutting instrument 2032 in a distal direction and application of the rotary output motion in an opposite direction will result in the axial travel of the cutting instrument 2032 in a proximal direction.

In various embodiments, the surgical tool **1200** employs and articulation system **2007** that includes an articulation joint **2011** that enables the surgical end effector **2012** to be articulated about an articulation axis AA-AA that is substantially transverse to the longitudinal tool axis LT-LT. In at least one embodiment, the surgical tool **1200** includes first and second articulation bars **2250a**, **2250b** that are slidably supported within corresponding passages **2053** provided through the proximal spine portion **2052**. See FIGS. **30** and **32**. In at least one form, the first and second articulation bars **2250a**, **2250b** are actuated by an articulation transmission generally designated as **2249** that is operably supported on the tool

mounting plate 1032. Each of the articulation bars 2250a, 2250b has a proximal end 2252 that has a guide rod protruding therefrom which extend laterally through a corresponding slot in the proximal end portion of the proximal spine portion 2052 and into a corresponding arcuate slot in an articulation 5 nut 2260 which comprises a portion of the articulation transmission. FIG. 40 illustrates articulation bar 2250a. It will be understood that articulation bar 2250b is similarly constructed. As can be seen in FIG. 31, for example, the articulation bar 2250a has a guide rod 2254 which extends laterally 10 through a corresponding slot 2058 in the proximal end portion 2056 of the distal spine portion 2050 and into a corresponding arcuate slot 2262 in the articulation nut 2260. In addition, the articulation bar 2250a has a distal end 2251a that is pivotally coupled to the distal spine portion 2050 by, for 15 example, a pin 2253a and articulation bar 2250b has a distal end 2251b that is pivotally coupled to the distal spine portion 2050 by, for example, a pin 2253b. In particular, the articulation bar 2250a is laterally offset in a first lateral direction from the longitudinal tool axis LT-LT and the articulation bar 20 2250b is laterally offset in a second lateral direction from the longitudinal tool axis LT-LT. Thus, axial movement of the articulation bars 2250a and 2250b in opposing directions will result in the articulation of the distal spine portion 2050 as well as the surgical end effector 2012 attached thereto about 25 the articulation axis AA-AA as will be discussed in further detail below.

Articulation of the surgical end effector 2012 is controlled by rotating the articulation nut 2260 about the longitudinal tool axis LT-LT. The articulation nut **2260** is rotatably jour- 30 naled on the proximal end portion 2056 of the distal spine portion 2050 and is rotatably driven thereon by an articulation gear assembly 2270. More specifically and with reference to FIG. 25, in at least one embodiment, the articulation gear assembly 2270 includes an articulation spur gear 2272 that is 35 coupled to a corresponding fourth one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 1302. See FIG. 22. Thus, application of another rotary input motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding fourth driven ele- 40 ment 1304 will cause rotation of the articulation spur gear 2272 when the interface 1230 is coupled to the tool holder 1270. An articulation drive gear 2274 is rotatably supported on the tool mounting plate 1302 in meshing engagement with the articulation spur gear 2272 and a gear portion 2264 of the 45 articulation nut 2260 as shown. As can be seen in FIGS. 30 and 31, the articulation nut 2260 has a shoulder 2266 formed thereon that defines an annular groove 2267 for receiving retaining posts 2268 therein. Retaining posts 2268 are attached to the tool mounting plate 1302 and serve to prevent 50 the articulation nut 2260 from moving axially on the proximal spine portion 2052 while maintaining the ability to be rotated relative thereto. Thus, rotation of the articulation nut 2260 in a first direction, will result in the axial movement of the articulation bar 2250a in a distal direction "DD" and the axial 55 movement of the articulation bar 2250b in a proximal direction "PD" because of the interaction of the guide rods 2254 with the spiral slots 2262 in the articulation gear 2260. Similarly, rotation of the articulation nut 2260 in a second direction that is opposite to the first direction will result in the axial 60 movement of the articulation bar 2250a in the proximal direction "PD" as well as cause articulation bar 2250b to axially move in the distal direction "DD". Thus, the surgical end effector 2012 may be selectively articulated about articulation axis "AA-AA" in a first direction "FD" by simulta- 65 neously moving the articulation bar 2250a in the distal direction "DD" and the articulation bar 2250b in the proximal

direction "PD". Likewise, the surgical end effector 2012 may be selectively articulated about the articulation axis "AA-AA" in a second direction "SD" by simultaneously moving the articulation bar 2250a in the proximal direction "PD" and the articulation bar 2250b in the distal direction "DD." See FIG. 23.

24

The tool embodiment described above employs an interface arrangement that is particularly well-suited for mounting the robotically controllable medical tool onto at least one form of robotic arm arrangement that generates at least four different rotary control motions. Those of ordinary skill in the art will appreciate that such rotary output motions may be selectively controlled through the programmable control systems employed by the robotic system/controller. For example, the tool arrangement described above may be wellsuited for use with those robotic systems manufactured by Intuitive Surgical, Inc. of Sunnyvale, Calif., U.S.A., many of which may be described in detail in various patents incorporated herein by reference. The unique and novel aspects of various embodiments of the present invention serve to utilize the rotary output motions supplied by the robotic system to generate specific control motions having sufficient magnitudes that enable end effectors to cut and staple tissue. Thus, the unique arrangements and principles of various embodiments of the present invention may enable a variety of different forms of the tool systems disclosed and claimed herein to be effectively employed in connection with other types and forms of robotic systems that supply programmed rotary or other output motions. In addition, as will become further apparent as the present Detailed Description proceeds, various end effector embodiments of the present invention that require other forms of actuation motions may also be effectively actuated utilizing one or more of the control motions generated by the robotic system.

FIGS. 34-38 illustrate yet another surgical tool 2300 that may be effectively employed in connection with the robotic system 1000 that has a tool drive assembly that is operably coupled to a controller of the robotic system that is operable by inputs from an operator and which is configured to provide at least one rotary output motion to at least one rotatable body portion supported on the tool drive assembly. In various forms, the surgical tool 2300 includes a surgical end effector 2312 that includes an elongated channel 2322 and a pivotally translatable clamping member, such as an anvil 2324, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 2312. As shown in the illustrated embodiment, the surgical end effector 2312 may include, in addition to the previouslymentioned elongated channel 2322 and anvil 2324, a cutting instrument 2332 that has a sled portion 2333 formed thereon, a surgical staple cartridge 2334 that is seated in the elongated channel 2322, and a rotary end effector drive shaft 2336 that has a helical screw thread formed thereon. The cutting instrument 2332 may be, for example, a knife. As will be discussed in further detail below, rotation of the end effector drive shaft 2336 will cause the cutting instrument 2332 and sled portion 2333 to axially travel through the surgical staple cartridge 2334 to move between a starting position and an ending position. The direction of axial travel of the cutting instrument 2332 depends upon the direction in which the end effector drive shaft 2336 is rotated. The anvil 2324 may be pivotably opened and closed at a pivot point 2325 connected to the proximate end of the elongated channel 2322. The anvil 2324 may also include a tab 2327 at its proximate end that operably interfaces with a component of the mechanical closure system (described further below) to open and close the anvil 2324. When the end effector drive shaft 2336 is rotated, the

cutting instrument 2332 and sled 2333 will travel longitudinally through the surgical staple cartridge 2334 from the starting position to the ending position, thereby cutting tissue clamped within the surgical end effector 2312. The movement of the sled 2333 through the surgical staple cartridge 5 2334 causes the staples therein to be driven through the severed tissue and against the closed anvil 2324, which turns the staples to fasten the severed tissue. In one form, the elongated channel 2322 and the anvil 2324 may be made of an electrically conductive material (such as metal) so that they may 10 serve as part of the antenna that communicates with sensor(s) in the end effector, as described above. The surgical staple cartridge 2334 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 2334, as described 15 above.

It should be noted that although the embodiments of the surgical tool 2300 described herein employ a surgical end effector 2312 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the sev- 20 ered tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled ELECTROSUR-GICAL HEMOSTATIC DEVICE, which issued on Jan. 20, 1998, and U.S. Pat. No. 5,688,270, entitled ELECTROSUR- 25 GICAL HEMOSTATIC DEVICE WITH RECESSED AND/ OR OFFSET ELECTRODES which issued on Nov. 18, 1997, which are incorporated herein by reference, discloses cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811, entitled SURGI- 30 CAL STAPLING INSTRUMENTS STRUCTURED FOR DELIVERY OF MEDICAL AGENTS, now U.S. Pat. No. 7,673,783, which issued on Mar. 9, 2010 and U.S. patent application Ser. No. 11/267,383, to Shelton et al., now U.S. Pat. No. 7,607,557, which are also incorporated herein by 35 reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening tech- 40 niques may also be used.

In the illustrated embodiment, the surgical end effector 2312 is coupled to an elongated shaft assembly 2308 that is coupled to a tool mounting portion 2460 and defines a longitudinal tool axis LT-LT. In this embodiment, the elongated 45 shaft assembly 2308 does not include an articulation joint. Those of ordinary skill in the art will understand that other embodiments may have an articulation joint therein. In at least one embodiment, the elongated shaft assembly 2308 comprises a hollow outer tube 2340 that is rotatably sup- 50 ported on a tool mounting plate 2462 of a tool mounting portion 2460 as will be discussed in further detail below. In various embodiments, the elongated shaft assembly 2308 further includes a distal spine shaft 2350. Distal spine shaft 2350 has a distal end portion 2354 that is coupled to, or 55 otherwise integrally formed with, a distal stationary base portion 2360 that is non-movably coupled to the channel 2322. See FIGS. 35-37.

As shown in FIG. **35**, the distal spine shaft **2350** has a proximal end portion **2351** that is slidably received within a 60 slot **2355** in a proximal spine shaft **2353** that is non-movably supported within the hollow outer tube **2340** by at least one support collar **2357**. As can be further seen in FIGS. **35** and **36**, the surgical tool **2300** includes a closure tube **2370** that is constrained to only move axially relative to the distal stationary base portion **2360**. The closure tube **2370** has a proximal end **2372** that has an internal thread **2374** formed therein that

is in threaded engagement with a transmission arrangement, generally depicted as 2375 that is operably supported on the tool mounting plate 2462. In various forms, the transmission arrangement 2375 includes a rotary drive shaft assembly, generally designated as 2381. When rotated, the rotary drive shaft assembly 2381 will cause the closure tube 2370 to move axially as will be describe in further detail below. In at least one form, the rotary drive shaft assembly 2381 includes a closure drive nut 2382 of a closure clutch assembly generally designated as 2380. More specifically, the closure drive nut 2382 has a proximal end portion 2384 that is rotatably supported relative to the outer tube 2340 and is in threaded engagement with the closure tube 2370. For assembly purposes, the proximal end portion 2384 may be threadably attached to a retention ring 2386. Retention ring 2386, in cooperation with an end 2387 of the closure drive nut 2382, defines an annular slot 2388 into which a shoulder 2392 of a locking collar 2390 extends. The locking collar 2390 is nonmovably attached (e.g., welded, glued, etc.) to the end of the outer tube 2340. Such arrangement serves to affix the closure drive nut 2382 to the outer tube 2340 while enabling the closure drive nut 2382 to rotate relative to the outer tube 2340. The closure drive nut 2382 further has a distal end 2383 that has a threaded portion 2385 that threadably engages the internal thread 2374 of the closure tube 2370. Thus, rotation of the closure drive nut 2382 will cause the closure tube 2370 to move axially as represented by arrow "D" in FIG. 36.

Closure of the anvil 2324 and actuation of the cutting instrument 2332 are accomplished by control motions that are transmitted by a hollow drive sleeve 2400. As can be seen in FIGS. 35 and 36, the hollow drive sleeve 2400 is rotatably and slidably received on the distal spine shaft 2350. The drive sleeve 2400 has a proximal end portion 2401 that is rotatably mounted to the proximal spine shaft 2353 that protrudes from the tool mounting portion 2460 such that the drive sleeve 2400 may rotate relative thereto. See FIG. 35. As can also be seen in FIGS. 35-37, the drive sleeve 2400 is rotated about the longitudinal tool axis "LT-LT" by a drive shaft 2440. The drive shaft 2440 has a drive gear 2444 that is attached to its distal end 2442 and is in meshing engagement with a driven gear 2450 that is attached to the drive sleeve 2400.

The drive sleeve 2400 further has a distal end portion 2402 that is coupled to a closure clutch 2410 portion of the closure clutch assembly 2380 that has a proximal face 2412 and a distal face 2414. The proximal face 2412 has a series of proximal teeth 2416 formed thereon that are adapted for selective engagement with corresponding proximal teeth cavities 2418 formed in the proximal end portion 2384 of the closure drive nut 2382. Thus, when the proximal teeth 2416 are in meshing engagement with the proximal teeth cavities 2418 in the closure drive nut 2382, rotation of the drive sleeve 2400 will result in rotation of the closure drive nut 2382 and ultimately cause the closure tube 2370 to move axially as will be discussed in further detail below.

As can be most particularly seen in FIGS. 35 and 36, the distal face 2414 of the drive clutch portion 2410 has a series of distal teeth 2415 formed thereon that are adapted for selective engagement with corresponding distal teeth cavities 2426 formed in a face plate portion 2424 of a knife drive shaft assembly 2420. In various embodiments, the knife drive shaft assembly 2420 comprises a hollow knife shaft segment 2430 that is rotatably received on a corresponding portion of the distal spine shaft 2350 that is attached to or protrudes from the stationary base 2360. When the distal teeth 2415 of the closure clutch portion 2410 are in meshing engagement with the distal teeth cavities 2426 in the face plate portion 2424, rotation of the drive sleeve 2400 will result in rotation of the drive

shaft segment 2430 about the stationary shaft 2350. As can be seen in FIGS. 35-37, a knife drive gear 2432 is attached to the drive shaft segment 2430 and is meshing engagement with a drive knife gear 2434 that is attached to the end effector drive shaft 2336. Thus, rotation of the drive shaft segment 2430 will 5 result in the rotation of the end effector drive shaft 2336 to drive the cutting instrument 2332 and sled 2333 distally through the surgical staple cartridge 2334 to cut and staple tissue clamped within the surgical end effector 2312. The sled 2333 may be made of, for example, plastic, and may have a 10 sloped distal surface. As the sled 2333 traverses the elongated channel 2322, the sloped forward surface of the sled 2333 pushes up or "drive" the staples in the surgical staple cartridge 2334 through the clamped tissue and against the anvil 2324. The anvil 2324 turns or "forms" the staples, thereby stapling 15 the severed tissue. As used herein, the term "fire" refers to the initiation of actions required to drive the cutting instrument and sled portion in a distal direction through the surgical staple cartridge to cut the tissue clamped in the surgical end effector and drive the staples through the severed tissue.

In use, it may be desirable to rotate the surgical end effector 2312 about the longitudinal tool axis LT-LT. In at least one embodiment, the transmission arrangement 2375 includes a rotational transmission assembly 2465 that is configured to receive a corresponding rotary output motion from the tool 25 drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 2308 (and surgical end effector 2312) about the longitudinal tool axis LT-LT. As can be seen in FIG. 38, a proximal end 2341 of the outer tube 2340 30 is rotatably supported within a cradle arrangement 2343 attached to the tool mounting plate 2462 of the tool mounting portion 2460. A rotation gear 2345 is formed on or attached to the proximal end 2341 of the outer tube 2340 of the elongated gear assembly 2470 operably supported on the tool mounting plate 2462. In at least one embodiment, a rotation drive gear 2472 is coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 2462 when the tool mounting portion 2460 is coupled to 40 the tool drive assembly 1010. See FIGS. 22 and 38. The rotation drive assembly 2470 further comprises a rotary driven gear 2474 that is rotatably supported on the tool mounting plate 2462 in meshing engagement with the rotation gear 2345 and the rotation drive gear 2472. Application 45 of a first rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 2472 by virtue of being operably coupled thereto. Rotation of the rotation drive gear 2472 ultimately 50 results in the rotation of the elongated shaft assembly 2308 (and the end effector 2312) about the longitudinal tool axis LT-LT (primary rotary motion).

Closure of the anvil 2324 relative to the staple cartridge 2034 is accomplished by axially moving the closure tube 55 2370 in the distal direction "DD". Axial movement of the closure tube 2370 in the distal direction "DD" is accomplished by applying a rotary control motion to the closure drive nut 2382. To apply the rotary control motion to the closure drive nut 2382, the closure clutch 2410 must first be brought into meshing engagement with the proximal end portion 2384 of the closure drive nut 2382. In various embodiments, the transmission arrangement 2375 further includes a shifter drive assembly 2480 that is operably supported on the tool mounting plate 2462. More specifically and with reference to FIG. 38, it can be seen that a proximal end portion 2359 of the proximal spine portion 2353 extends through the

rotation gear 2345 and is rotatably coupled to a shifter gear rack 2481 that is slidably affixed to the tool mounting plate 2462 through slots 2482. The shifter drive assembly 2480 further comprises a shifter drive gear 2483 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 2462 when the tool mounting portion 2460 is coupled to the tool holder 1270. See FIGS. 22 and 38. The shifter drive assembly 2480 further comprises a shifter driven gear 2478 that is rotatably supported on the tool mounting plate 2462 in meshing engagement with the shifter drive gear 2483 and the shifter rack gear 2482. Application of a second rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding driven element 1304 will thereby cause rotation of the shifter drive gear 2483 by virtue of being operably coupled thereto. Rotation of the shifter drive gear 2483 ultimately results in the axial movement of the shifter gear rack 2482 and the proximal spine portion 2353 as well as the drive sleeve 2400 and the closure clutch 2410 attached 20 thereto. The direction of axial travel of the closure clutch 2410 depends upon the direction in which the shifter drive gear 2483 is rotated by the robotic system 1000. Thus, rotation of the shifter drive gear 2483 in a first rotary direction will result in the axial movement of the closure clutch 2410 in the proximal direction "PD" to bring the proximal teeth 2416 into meshing engagement with the proximal teeth cavities 2418 in the closure drive nut 2382. Conversely, rotation of the shifter drive gear 2483 in a second rotary direction (opposite to the first rotary direction) will result in the axial movement of the closure clutch 2410 in the distal direction "DD" to bring the distal teeth 2415 into meshing engagement with corresponding distal teeth cavities 2426 formed in the face plate portion 2424 of the knife drive shaft assembly 2420.

Once the closure clutch 2410 has been brought into meshshaft assembly 2308 for meshing engagement with a rotation 35 ing engagement with the closure drive nut 2382, the closure drive nut 2382 is rotated by rotating the closure clutch 2410. Rotation of the closure clutch 2410 is controlled by applying rotary output motions to a rotary drive transmission portion 2490 of transmission arrangement 2375 that is operably supported on the tool mounting plate 2462 as shown in FIG. 38. In at least one embodiment, the rotary drive transmission 2490 includes a rotary drive assembly 2490' that includes a gear 2491 that is coupled to a corresponding third one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 2462 when the tool mounting portion 2460 is coupled to the tool holder 1270. See FIGS. 22 and 38. The rotary drive transmission 2490 further comprises a first rotary driven gear 2492 that is rotatably supported on the tool mounting plate 2462 in meshing engagement with a second rotary driven gear 2493 and the rotary drive gear 2491. The second rotary driven gear 2493 is coupled to a proximal end portion 2443 of the drive shaft 2440.

> Rotation of the rotary drive gear 2491 in a first rotary direction will result in the rotation of the drive shaft 2440 in a first direction. Conversely, rotation of the rotary drive gear **2491** in a second rotary direction (opposite to the first rotary direction) will cause the drive shaft 2440 to rotate in a second direction. As indicated above, the drive shaft 2440 has a drive gear 2444 that is attached to its distal end 2442 and is in meshing engagement with a driven gear 2450 that is attached to the drive sleeve 2400. Thus, rotation of the drive shaft 2440 results in rotation of the drive sleeve 2400.

A method of operating the surgical tool 2300 will now be described. Once the tool mounting portion 2462 has been operably coupled to the tool holder 1270 of the robotic system 1000 and oriented into position adjacent the target tissue to be cut and stapled, if the anvil 2334 is not already in the open

30

position (FIG. 35), the robotic system 1000 may apply the first rotary output motion to the shifter drive gear 2483 which results in the axial movement of the closure clutch 2410 into meshing engagement with the closure drive nut 2382 (if it is not already in meshing engagement therewith). See FIG. 36. 5 Once the controller 1001 of the robotic system 1000 has confirmed that the closure clutch 2410 is meshing engagement with the closure drive nut 2382 (e.g., by means of sensor(s)) in the surgical end effector 2312 that are in communication with the robotic control system), the robotic controller 1001 may then apply a second rotary output motion to the rotary drive gear 2492 which, as was described above, ultimately results in the rotation of the rotary drive nut 2382 in the first direction which results in the axial travel of the closure tube 2370 in the distal direction "DD". As the closure 15 tube 2370 moved in the distal direction, it contacts a portion of the anvil 2323 and causes the anvil 2324 to pivot to the closed position to clamp the target tissue between the anvil 2324 and the surgical staple cartridge 2334. Once the robotic controller 1001 determines that the anvil 2334 has been piv- 20 oted to the closed position by corresponding sensor(s) in the surgical end effector 2312 in communication therewith, the robotic system 1000 discontinues the application of the second rotary output motion to the rotary drive gear 2491. The robotic controller 1001 may also provide the surgeon with an 25 indication that the anvil 2334 has been fully closed. The surgeon may then initiate the firing procedure. In alternative embodiments, the firing procedure may be automatically initiated by the robotic controller 1001. The robotic controller 1001 then applies the primary rotary control motion 2483 to 30 the shifter drive gear 2483 which results in the axial movement of the closure clutch 2410 into meshing engagement with the face plate portion 2424 of the knife drive shaft assembly 2420. See FIG. 46. Once the controller 1001 of the robotic system 1000 has confirmed that the closure clutch 35 2410 is meshing engagement with the face plate portion 2424 (by means of sensor(s)) in the end effector 2312 that are in communication with the robotic controller 1001), the robotic controller 1001 may then apply the second rotary output motion to the rotary drive gear 2492 which, as was described 40 above, ultimately results in the axial movement of the cutting instrument 2332 and sled portion 2333 in the distal direction "DD" through the surgical staple cartridge 2334. As the cutting instrument 2332 moves distally through the surgical staple cartridge 2334, the tissue clamped therein is severed. 45 As the sled portion 2333 is driven distally, it causes the staples within the surgical staple cartridge to be driven through the severed tissue into forming contact with the anvil 2324. Once the robotic controller 1001 has determined that the cutting instrument 2324 has reached the end position within the sur- 50 gical staple cartridge 2334 (by means of sensor(s)) in the end effector 2312 that are in communication with the robotic controller 1001), the robotic controller 1001 discontinues the application of the second rotary output motion to the rotary drive gear 2491. Thereafter, the robotic controller 1001 55 applies the secondary rotary output motion to the rotary drive gear 2491 which ultimately results in the axial travel of the cutting instrument 2332 and sled portion 2333 in the proximal direction "PD" to the starting position. Once the robotic controller 1001 has determined that the cutting instrument 2324 has reached the starting position by means of sensor(s) in the surgical end effector 2312 that are in communication with the robotic controller 1001, the robotic controller 1001 discontinues the application of the secondary rotary output motion to the rotary drive gear 2491. Thereafter, the robotic control- 65 ler 1001 applies the primary rotary output motion to the shifter drive gear 2483 to cause the closure clutch 2410 to

move into engagement with the rotary drive nut 2382. Once the closure clutch 2410 has been moved into meshing engagement with the rotary drive nut 2382, the robotic controller 1001 then applies the secondary output motion to the rotary drive gear 2491 which ultimately results in the rotation of the rotary drive nut 2382 in the second direction to cause the closure tube 2370 to move in the proximal direction "PD". As can be seen in FIGS. 35-37, the closure tube 2370 has an opening 2345 therein that engages the tab 2327 on the anvil 2324 to cause the anvil 2324 to pivot to the open position. In alternative embodiments, a spring may also be employed to pivot the anvil 2324 to the open position when the closure tube 2370 has been returned to the starting position (FIG. 35).

FIGS. 39-43 illustrate yet another surgical tool 2500 that may be effectively employed in connection with the robotic system 1000. In various forms, the surgical tool 2500 includes a surgical end effector 2512 that includes a "first portion" in the form of an elongated channel 2522 and a "second movable portion" in the form of a pivotally translatable clamping member, such as an anvil 2524, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 2512. As shown in the illustrated embodiment, the surgical end effector 2512 may include, in addition to the previously-mentioned elongated channel 2522 and anvil 2524, a "third movable portion" in the form of a cutting instrument 2532, a sled (not shown), and a surgical staple cartridge 2534 that is removably seated in the elongated channel 2522. The cutting instrument 2532 may be, for example, a knife. The anvil 2524 may be pivotably opened and closed at a pivot point 2525 connected to the proximate end of the elongated channel **2522**. The anvil **2524** may also include a tab 2527 at its proximate end that is configured to operably interface with a component of the mechanical closure system (described further below) to open and close the anvil 2524. When actuated, the knife 2532 and sled travel longitudinally along the elongated channel 2522, thereby cutting tissue clamped within the surgical end effector 2512. The movement of the sled along the elongated channel 2522 causes the staples of the surgical staple cartridge 2534 to be driven through the severed tissue and against the closed anvil 2524, which turns the staples to fasten the severed tissue. In one form, the elongated channel 2522 and the anvil 2524 may be made of an electrically conductive material (such as metal) so that they may serve as part of the antenna that communicates with sensor(s) in the surgical end effector, as described above. The surgical staple cartridge 2534 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 2534, as described above.

It should be noted that although the embodiments of the surgical tool 2500 described herein employ a surgical end effector 2512 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled ELECTROSUR-GICAL HEMOSTATIC DEVICE which issued on Jan. 20, 1998, and U.S. Pat. No. 5,688,270, entitled ELECTROSUR-GICAL HEMOSTATIC DEVICE WITH RECESSED AND/ OR OFFSET ELECTRODES, which issued on Nov. 18, 1997, which are incorporated herein by reference, discloses cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811, entitled SURGICAL STAPLING INSTRUMENTS STRUCTURED FOR DELIVERY OF MEDICAL AGENTS, now U.S. Pat. No. 7,673,783, which issued on Mar. 9, 2010, and U.S. patent application Ser. No. 11/267,383, to Shelton et al., now U.S.

Pat. No. 7,607,557, which are also incorporated herein by reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment 5 and is not meant to be limiting. Other tissue-fastening techniques may also be used.

In the illustrated embodiment, the elongated channel 2522 of the surgical end effector 2512 is coupled to an elongated shaft assembly 2508 that is coupled to a tool mounting portion 10 2600. In at least one embodiment, the elongated shaft assembly 2508 comprises a hollow spine tube 2540 that is non-movably coupled to a tool mounting plate 2602 of the tool mounting portion 2600. As can be seen in FIGS. 40 and 41, the proximal end 2523 of the elongated channel 2522 comprises a hollow tubular structure configured to be attached to the distal end 2541 of the spine tube 2540. In one embodiment, for example, the proximal end 2523 of the elongated channel 2522 is welded or glued to the distal end of the spine tube 2540.

As can be further seen in FIGS. 40 and 41, in at least one non-limiting embodiment, the surgical tool 2500 further includes an axially movable actuation member in the form of a closure tube 2550 that is constrained to move axially relative to the elongated channel 2522 and the spine tube 1540. The 25 closure tube 2550 has a proximal end 2552 that has an internal thread 2554 formed therein that is in threaded engagement with a rotatably movable portion in the form of a closure drive nut 2560. More specifically, the closure drive nut 2560 has a proximal end portion 2562 that is rotatably supported relative 30 to the elongated channel 2522 and the spine tube 2540. For assembly purposes, the proximal end portion 2562 is threadably attached to a retention ring 2570. The retention ring 2570 is received in a groove 2529 formed between a shoulder 2527 on the proximal end 2523 of the elongated channel 2522 and 35 the distal end 2541 of the spine tube 1540. Such arrangement serves to rotatably support the closure drive nut 2560 within the elongated channel 2522. Rotation of the closure drive nut 2560 will cause the closure tube 2550 to move axially as represented by arrow "D" in FIG. 40.

Extending through the spine tube 2540 and the closure drive nut 2560 is a drive member which, in at least one embodiment, comprises a knife bar 2580 that has a distal end portion 2582 that is rotatably coupled to the cutting instrument 2532 such that the knife bar 2580 may rotate relative to 45 the cutting instrument 2582. As can be seen in FIG. 40-42, the closure drive nut 2560 has a slot 2564 therein through which the knife bar 2580 can slidably extend. Such arrangement permits the knife bar 2580 to move axially relative to the closure drive nut 2560. However, rotation of the knife bar 50 2580 about the longitudinal tool axis LT-LT will also result in the rotation of the closure drive nut **2560**. The axial direction in which the closure tube 2550 moves ultimately depends upon the direction in which the knife bar 2580 and the closure drive nut 2560 are rotated. As the closure tube 2550 is driven 55 distally, the distal end thereof will contact the anvil 2524 and cause the anvil 2524 to pivot to a closed position. Upon application of an opening rotary output motion from the robotic system 1000, the closure tube 2550 will be driven in the proximal direction "PD" and pivot the anvil 2524 to the open position by virtue of the engagement of the tab 2527 with the opening 2555 in the closure tube 2550.

In use, it may be desirable to rotate the surgical end effector 2512 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 2600 is configured to 65 receive a corresponding first rotary output motion from the robotic system 1000 and convert that first rotary output

motion to a rotary control motion for rotating the elongated shaft assembly 2508 about the longitudinal tool axis LT-LT. As can be seen in FIG. 38, a proximal end 2542 of the hollow spine tube 2540 is rotatably supported within a cradle arrangement 2603 attached to a tool mounting plate 2602 of the tool mounting portion 2600. Various embodiments of the surgical tool 2500 further include a transmission arrangement, generally depicted as 2605, that is operably supported on the tool mounting plate 2602. In various forms the transmission arrangement 2605 include a rotation gear 2544 that is formed on or attached to the proximal end 2542 of the spine tube 2540 for meshing engagement with a rotation drive assembly 2610 that is operably supported on the tool mounting plate 2602. In at least one embodiment, a rotation drive gear 2612 is coupled to a corresponding first one of the rotational bodies, driven discs or elements 1304 on the adapter side of the tool mounting plate 2602 when the tool mounting portion 2600 is coupled to the tool holder 1270. See FIGS. 22 and 43. The rotation drive assembly 2610 further 20 comprises a rotary driven gear 2614 that is rotatably supported on the tool mounting plate 2602 in meshing engagement with the rotation gear 2544 and the rotation drive gear 2612. Application of a first rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding driven rotational body 1304 will thereby cause rotation of the rotation drive gear 2612 by virtue of being operably coupled thereto. Rotation of the rotation drive gear 2612 ultimately results in the rotation of the elongated shaft assembly 2508 (and the end effector 2512) about the longitudinal tool axis LT-LT.

32

Closure of the anvil 2524 relative to the surgical staple cartridge 2534 is accomplished by axially moving the closure tube 2550 in the distal direction "DD". Axial movement of the closure tube 2550 in the distal direction "DD" is accomplished by applying a rotary control motion to the closure drive nut 2382. In various embodiments, the closure drive nut 2560 is rotated by applying a rotary output motion to the knife bar 2580. Rotation of the knife bar 2580 is controlled by applying rotary output motions to a rotary closure system 40 **2620** that is operably supported on the tool mounting plate 2602 as shown in FIG. 43. In at least one embodiment, the rotary closure system 2620 includes a closure drive gear 2622 that is coupled to a corresponding second one of the driven rotatable body portions discs or elements 1304 on the adapter side of the tool mounting plate 2462 when the tool mounting portion 2600 is coupled to the tool holder 1270. See FIGS. 22 and 43. The closure drive gear 2622, in at least one embodiment, is in meshing driving engagement with a closure gear train, generally depicted as 2623. The closure gear drive rain 2623 comprises a first driven closure gear 2624 that is rotatably supported on the tool mounting plate 2602. The first closure driven gear 2624 is attached to a second closure driven gear 2626 by a drive shaft 2628. The second closure driven gear 2626 is in meshing engagement with a third closure driven gear 2630 that is rotatably supported on the tool mounting plate 2602. Rotation of the closure drive gear 2622 in a second rotary direction will result in the rotation of the third closure driven gear 2630 in a second direction. Conversely, rotation of the closure drive gear 2483 in a secondary rotary direction (opposite to the second rotary direction) will cause the third closure driven gear 2630 to rotate in a secondary direction.

As can be seen in FIG. 43, a drive shaft assembly 2640 is coupled to a proximal end of the knife bar 2580. In various embodiments, the drive shaft assembly 2640 includes a proximal portion 2642 that has a square cross-sectional shape. The proximal portion 2642 is configured to slideably engage a

correspondingly shaped aperture in the third driven gear 2630. Such arrangement results in the rotation of the drive shaft assembly 2640 (and knife bar 2580) when the third driven gear 2630 is rotated. The drive shaft assembly 2640 is axially advanced in the distal and proximal directions by a knife drive assembly 2650. One form of the knife drive assembly 2650 comprises a rotary drive gear 2652 that is coupled to a corresponding third one of the driven rotatable body portions, discs or elements 1304 on the adapter side of the tool mounting plate 2462 when the tool mounting portion 10 2600 is coupled to the tool holder 1270. See FIGS. 22 and 43. The rotary driven gear 2652 is in meshing driving engagement with a gear train, generally depicted as 2653. In at least one form, the gear train 2653 further comprises a first rotary driven gear assembly 2654 that is rotatably supported on the 15 tool mounting plate 2602. The first rotary driven gear assembly 2654 is in meshing engagement with a third rotary driven gear assembly 2656 that is rotatably supported on the tool mounting plate 2602 and which is in meshing engagement with a fourth rotary driven gear assembly 2658 that is in 20 meshing engagement with a threaded portion 2644 of the drive shaft assembly 2640. Rotation of the rotary drive gear 2652 in a third rotary direction will result in the axial advancement of the drive shaft assembly 2640 and knife bar 2580 in the distal direction "DD". Conversely, rotation of the 25 rotary drive gear 2652 in a tertiary rotary direction (opposite to the third rotary direction) will cause the drive shaft assembly 2640 and the knife bar 2580 to move in the proximal direction.

A method of operating the surgical tool **2500** will now be 30 described. Once the tool mounting portion 2600 has been operably coupled to the tool holder 1270 of the robotic system 1000, the robotic system 1000 can orient the surgical end effector 2512 in position adjacent the target tissue to be cut and stapled. If the anvil 2524 is not already in the open 35 position (FIG. 49), the robotic system 1000 may apply the second rotary output motion to the closure drive gear 2622 which results in the rotation of the knife bar 2580 in a second direction. Rotation of the knife bar 2580 in the second direction results in the rotation of the closure drive nut 2560 in a 40 second direction. As the closure drive nut 2560 rotates in the second direction, the closure tube 2550 moves in the proximal direction "PD". As the closure tube 2550 moves in the proximal direction "PD", the tab 2527 on the anvil 2524 interfaces with the opening 2555 in the closure tube 2550 and causes the 45 anvil 2524 to pivot to the open position. In addition or in alternative embodiments, a spring (not shown) may be employed to pivot the anvil 2354 to the open position when the closure tube 2550 has been returned to the starting position (FIG. 40). The opened surgical end effector 2512 may 50 then be manipulated by the robotic system 1000 to position the target tissue between the open anvil 2524 and the surgical staple cartridge 2534. Thereafter, the surgeon may initiate the closure process by activating the robotic control system 1000 to apply the second rotary output motion to the closure drive 55 gear 2622 which, as was described above, ultimately results in the rotation of the closure drive nut 2382 in the second direction which results in the axial travel of the closure tube 2250 in the distal direction "DD". As the closure tube 2550 moves in the distal direction, it contacts a portion of the anvil 60 2524 and causes the anvil 2524 to pivot to the closed position to clamp the target tissue between the anvil 2524 and the staple cartridge 2534. Once the robotic controller 1001 determines that the anvil 2524 has been pivoted to the closed position by corresponding sensor(s) in the end effector 2512 65 that are in communication therewith, the robotic controller 1001 discontinues the application of the second rotary output

motion to the closure drive gear 2622. The robotic controller 1001 may also provide the surgeon with an indication that the anvil 2524 has been fully closed. The surgeon may then initiate the firing procedure. In alternative embodiments, the firing procedure may be automatically initiated by the robotic controller 1001.

After the robotic controller 1001 has determined that the anvil 2524 is in the closed position, the robotic controller 1001 then applies the third rotary output motion to the rotary drive gear 2652 which results in the axial movement of the drive shaft assembly 2640 and knife bar 2580 in the distal direction "DD". As the cutting instrument 2532 moves distally through the surgical staple cartridge 2534, the tissue clamped therein is severed. As the sled portion (not shown) is driven distally, it causes the staples within the surgical staple cartridge 2534 to be driven through the severed tissue into forming contact with the anvil 2524. Once the robotic controller 1001 has determined that the cutting instrument 2532 has reached the end position within the surgical staple cartridge 2534 by means of sensor(s) in the surgical end effector 2512 that are in communication with the robotic controller 1001, the robotic controller 1001 discontinues the application of the second rotary output motion to the rotary drive gear 2652. Thereafter, the robotic controller 1001 applies the secondary rotary control motion to the rotary drive gear 2652 which ultimately results in the axial travel of the cutting instrument 2532 and sled portion in the proximal direction "PD" to the starting position. Once the robotic controller 1001 has determined that the cutting instrument 2524 has reached the starting position by means of sensor(s) in the end effector 2512 that are in communication with the robotic controller 1001, the robotic controller 1001 discontinues the application of the secondary rotary output motion to the rotary drive gear 2652. Thereafter, the robotic controller 1001 may apply the secondary rotary output motion to the closure drive gear 2622 which results in the rotation of the knife bar 2580 in a secondary direction. Rotation of the knife bar 2580 in the secondary direction results in the rotation of the closure drive nut 2560 in a secondary direction. As the closure drive nut 2560 rotates in the secondary direction, the closure tube 2550 moves in the proximal direction "PD" to the open posi-

FIGS. 44-49B illustrate yet another surgical tool 2700 that may be effectively employed in connection with the robotic system 1000. In various forms, the surgical tool 2700 includes a surgical end effector 2712 that includes a "first portion" in the form of an elongated channel 2722 and a "second movable portion" in on form comprising a pivotally translatable clamping member, such as an anvil 2724, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 2712. As shown in the illustrated embodiment, the surgical end effector 2712 may include, in addition to the previously-mentioned channel 2722 and anvil 2724, a "third movable portion" in the form of a cutting instrument 2732, a sled (not shown), and a surgical staple cartridge 2734 that is removably seated in the elongated channel 2722. The cutting instrument 2732 may be, for example, a knife. The anvil 2724 may be pivotably opened and closed at a pivot point 2725 connected to the proximal end of the elongated channel 2722. The anvil 2724 may also include a tab 2727 at its proximal end that interfaces with a component of the mechanical closure system (described further below) to open and close the anvil 2724. When actuated, the knife 2732 and sled to travel longitudinally along the elongated channel 2722, thereby cutting tissue clamped within the surgical end effector 2712. The movement of the sled along the elongated channel 2722 causes the staples of

the surgical staple cartridge 2734 to be driven through the severed tissue and against the closed anvil 2724, which turns the staples to fasten the severed tissue. In one form, the elongated channel 2722 and the anvil 2724 may be made of an electrically conductive material (such as metal) so that they 5 may serve as part of the antenna that communicates with sensor(s) in the surgical end effector, as described above. The surgical staple cartridge 2734 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 2734, as 10 described above.

It should be noted that although the embodiments of the surgical tool 2500 described herein employ a surgical end effector 2712 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the sev- 15 ered tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled ELECTROSUR-GICAL HEMOSTATIC DEVICE, which issued on Jan. 20, 1998, and U.S. Pat. No. 5.688,270, entitled ELECTROSUR- 20 GICAL HEMOSTATIC DEVICE WITH RECESSED AND/ OR OFFSET ELECTRODES which issued on Nov. 18, 1997, which are incorporated herein by reference, discloses cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811 entitled SURGI- 25 CAL STAPLING INSTRUMENTS STRUCTURED FOR DELIVERY OF MEDICAL AGENTS, now U.S. Pat. No. 7,673,783, which issued on Mar. 9, 2010 and U.S. patent application Ser. No. 11/267,383, to Shelton et al., now U.S. Pat. No. 7,607,557, which are also incorporated herein by 30 reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening tech- 35 niques may also be used.

In the illustrated embodiment, the elongated channel 2722 of the surgical end effector 2712 is coupled to an elongated shaft assembly 2708 that is coupled to a tool mounting portion 2900. Although not shown, the elongated shaft assembly 40 2708 may include an articulation joint to permit the surgical end effector 2712 to be selectively articulated about an axis that is substantially transverse to the tool axis LT-LT. In at least one embodiment, the elongated shaft assembly 2708comprises a hollow spine tube 2740 that is non-movably 45 coupled to a tool mounting plate 2902 of the tool mounting portion 2900. As can be seen in FIGS. 45 and 46, the proximal end 2723 of the elongated channel 2722 comprises a hollow tubular structure that is attached to the spine tube 2740 by means of a mounting collar 2790. A cross-sectional view of 50 the mounting collar 2790 is shown in FIG. 47. In various embodiments, the mounting collar 2790 has a proximal flanged end 2791 that is configured for attachment to the distal end of the spine tube 2740. In at least one embodiment, for example, the proximal flanged end 2791 of the mounting 55 collar 2790 is welded or glued to the distal end of the spine tube 2740. As can be further seen in FIGS. 45 and 46, the mounting collar 2790 further has a mounting hub portion 2792 that is sized to receive the proximal end 2723 of the elongated channel 2722 thereon. The proximal end 2723 of 60 the elongated channel 2722 is non-movably attached to the mounting hub portion 2792 by, for example, welding, adhe-

As can be further seen in FIGS. 45 and 46, the surgical tool 2700 further includes an axially movable actuation member 65 in the form of a closure tube 2750 that is constrained to move axially relative to the elongated channel 2722. The closure

36

tube 2750 has a proximal end 2752 that has an internal thread 2754 formed therein that is in threaded engagement with a rotatably movable portion in the form of a closure drive nut 2760. More specifically, the closure drive nut 2760 has a proximal end portion 2762 that is rotatably supported relative to the elongated channel 2722 and the spine tube 2740. For assembly purposes, the proximal end portion 2762 is threadably attached to a retention ring 2770. The retention ring 2770 is received in a groove 2729 formed between a shoulder 2727 on the proximal end 2723 of the channel 2722 and the mounting hub 2729 of the mounting collar 2790. Such arrangement serves to rotatably support the closure drive nut 2760 within the channel 2722. Rotation of the closure drive nut 2760 will cause the closure tube 2750 to move axially as represented by arrow "D" in FIG. 45.

Extending through the spine tube 2740, the mounting collar 2790, and the closure drive nut 2760 is a drive member, which in at least one embodiment, comprises a knife bar 2780 that has a distal end portion 2782 that is coupled to the cutting instrument 2732. As can be seen in FIGS. 45 and 46, the mounting collar 2790 has a passage 2793 therethrough for permitting the knife bar 2780 to slidably pass therethrough. Similarly, the closure drive nut 2760 has a slot 2764 therein through which the knife bar 2780 can slidably extend. Such arrangement permits the knife bar 2780 to move axially relative to the closure drive nut 2760.

Actuation of the anvil 2724 is controlled by a rotary driven closure shaft 2800. As can be seen in FIGS. 45 and 46, a distal end portion 2802 of the closure drive shaft 2800 extends through a passage 2794 in the mounting collar 2790 and a closure gear 2804 is attached thereto. The closure gear 2804 is configured for driving engagement with the inner surface 2761 of the closure drive nut 2760. Thus, rotation of the closure shaft 2800 will also result in the rotation of the closure drive nut 2760. The axial direction in which the closure tube 2750 moves ultimately depends upon the direction in which the closure shaft 2800 and the closure drive nut 2760 are rotated. For example, in response to one rotary closure motion received from the robotic system 1000, the closure tube 2750 will be driven in the distal direction "DD". As the closure tube 2750 is driven distally, the opening 2745 will engage the tab 2727 on the anvil 2724 and cause the anvil 2724 to pivot to a closed position. Upon application of an opening rotary motion from the robotic system 1000, the closure tube 2750 will be driven in the proximal direction "PD" and pivot the anvil 2724 to the open position. In various embodiments, a spring (not shown) may be employed to bias the anvil 2724 to the open position (FIG. 45).

In use, it may be desirable to rotate the surgical end effector 2712 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 2900 is configured to receive a corresponding first rotary output motion from the robotic system 1000 for rotating the elongated shaft assembly 2708 about the tool axis LT-LT. As can be seen in FIG. 49, a proximal end 2742 of the hollow spine tube 2740 is rotatably supported within a cradle arrangement 2903 and a bearing assembly 2904 that are attached to a tool mounting plate 2902 of the tool mounting portion 2900. A rotation gear 2744 is formed on or attached to the proximal end 2742 of the spine tube 2740 for meshing engagement with a rotation drive assembly 2910 that is operably supported on the tool mounting plate 2902. In at least one embodiment, a rotation drive gear 2912 is coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 2602 when the tool mounting portion 2600 is coupled to the tool holder 1270. See FIGS. 22 and 49. The rotation drive assembly 2910 further comprises a rotary

driven gear 2914 that is rotatably supported on the tool mounting plate 2902 in meshing engagement with the rotation gear 2744 and the rotation drive gear 2912. Application of a first rotary control motion from the robotic system 1000 through the tool holder 1270 and the adapter 1240 to the 5 corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 2912 by virtue of being operably coupled thereto. Rotation of the rotation drive gear 2912 ultimately results in the rotation of the elongated shaft assembly 2708 (and the end effector 2712) about the longitudinal 10 tool axis LT-LT (primary rotary motion).

Closure of the anvil 2724 relative to the staple cartridge 2734 is accomplished by axially moving the closure tube 2750 in the distal direction "DD". Axial movement of the closure tube 2750 in the distal direction "DD" is accom- 15 plished by applying a rotary control motion to the closure drive nut 2760. In various embodiments, the closure drive nut 2760 is rotated by applying a rotary output motion to the closure drive shaft 2800. As can be seen in FIG. 49, a proximal end portion 2806 of the closure drive shaft 2800 has a driven 20 gear 2808 thereon that is in meshing engagement with a closure drive assembly 2920. In various embodiments, the closure drive system 2920 includes a closure drive gear 2922 that is coupled to a corresponding second one of the driven rotational bodies or elements 1304 on the adapter side of the 25 tool mounting plate 2462 when the tool mounting portion 2900 is coupled to the tool holder 1270. See FIGS. 22 and 49. The closure drive gear 2922 is supported in meshing engagement with a closure gear train, generally depicted as 2923. In at least one form, the closure gear rain 2923 comprises a first 30 driven closure gear 2924 that is rotatably supported on the tool mounting plate 2902. The first closure driven gear 2924 is attached to a second closure driven gear 2926 by a drive shaft 2928. The second closure driven gear 2926 is in meshing engagement with a planetary gear assembly 2930. In various 35 embodiments, the planetary gear assembly 2930 includes a driven planetary closure gear 2932 that is rotatably supported within the bearing assembly 2904 that is mounted on tool mounting plate 2902. As can be seen in FIGS. 49 and 49B, the proximal end portion 2806 of the closure drive shaft 2800 is 40 rotatably supported within the proximal end portion 2742 of the spine tube 2740 such that the driven gear 2808 is in meshing engagement with central gear teeth 2934 formed on the planetary gear 2932. As can also be seen in FIG. 49A, two additional support gears 2936 are attached to or rotatably 45 supported relative to the proximal end portion 2742 of the spine tube 2740 to provide bearing support thereto. Such arrangement with the planetary gear assembly 2930 serves to accommodate rotation of the spine shaft 2740 by the rotation drive assembly 2910 while permitting the closure driven gear 50 2808 to remain in meshing engagement with the closure drive system 2920. In addition, rotation of the closure drive gear 2922 in a first direction will ultimately result in the rotation of the closure drive shaft 2800 and closure drive nut 2760 which will ultimately result in the closure of the anvil 2724 as 55 described above. Conversely, rotation of the closure drive gear 2922 in a second opposite direction will ultimately result in the rotation of the closure drive nut 2760 in an opposite direction which results in the opening of the anvil 2724.

As can be seen in FIG. 49, the proximal end 2784 of the 60 knife bar 2780 has a threaded shaft portion 2786 attached thereto which is in driving engagement with a knife drive assembly 2940. In various embodiments, the threaded shaft portion 2786 is rotatably supported by a bearing 2906 attached to the tool mounting plate 2902. Such arrangement 65 permits the threaded shaft portion 2786 to rotate and move axially relative to the tool mounting plate 2902. The knife bar

2780 is axially advanced in the distal and proximal directions by the knife drive assembly 2940. One form of the knife drive assembly 2940 comprises a rotary drive gear 2942 that is coupled to a corresponding third one of the rotatable bodies, driven discs or elements 1304 on the adapter side of the tool mounting plate 2902 when the tool mounting portion 2900 is coupled to the tool holder 1270. See FIGS. 22 and 49. The rotary drive gear 2942 is in meshing engagement with a knife gear train, generally depicted as 2943. In various embodiments, the knife gear train 2943 comprises a first rotary driven gear assembly 2944 that is rotatably supported on the tool mounting plate 2902. The first rotary driven gear assembly 2944 is in meshing engagement with a third rotary driven gear assembly 2946 that is rotatably supported on the tool mounting plate 2902 and which is in meshing engagement with a fourth rotary driven gear assembly 2948 that is in meshing engagement with the threaded portion 2786 of the knife bar 2780. Rotation of the rotary drive gear 2942 in one direction will result in the axial advancement of the knife bar 2780 in the distal direction "DD". Conversely, rotation of the rotary drive gear 2942 in an opposite direction will cause the knife bar 2780 to move in the proximal direction. Tool 2700 may otherwise be used as described above.

38

FIGS. 50 and 51 illustrate a surgical tool embodiment 2700' that is substantially identical to tool 2700 that was described in detail above. However tool 2700' includes a pressure sensor 2950 that is configured to provide feedback to the robotic controller 1001 concerning the amount of clamping pressure experienced by the anvil 2724. In various embodiments, for example, the pressure sensor may comprise a spring biased contact switch. For a continuous signal, it would use either a cantilever beam with a strain gage on it or a dome button top with a strain gage on the inside. Another version may comprise an off switch that contacts only at a known desired load. Such arrangement would include a dome on the based wherein the dome is one electrical pole and the base is the other electrical pole. Such arrangement permits the robotic controller 1001 to adjust the amount of clamping pressure being applied to the tissue within the surgical end effector 2712 by adjusting the amount of closing pressure applied to the anvil 2724. Those of ordinary skill in the art will understand that such pressure sensor arrangement may be effectively employed with several of the surgical tool embodiments described herein as well as their equivalent structures.

FIG. 52 illustrates a portion of another surgical tool 3000 that may be effectively used in connection with a robotic system 1000. The surgical tool 3003 employs on-board motor(s) for powering various components of a surgical end effector cutting instrument. In at least one non-limiting embodiment for example, the surgical tool 3000 includes a surgical end effector in the form of an endocutter (not shown) that has an anvil (not shown) and surgical staple cartridge arrangement (not shown) of the types and constructions described above. The surgical tool 3000 also includes an elongated shaft (not shown) and anvil closure arrangement (not shown) of the types described above. Thus, this portion of the Detailed Description will not repeat the description of those components beyond that which is necessary to appreciate the unique and novel attributes of the various embodiments of surgical tool 3000.

In the depicted embodiment, the end effector includes a cutting instrument 3002 that is coupled to a knife bar 3003. As can be seen in FIG. 52, the surgical tool 3000 includes a tool mounting portion 3010 that includes a tool mounting plate 3012 that is configured to mountingly interface with the adaptor portion 1240' which is coupled to the robotic system 1000

in the various manners described above. The tool mounting portion 3010 is configured to operably support a transmission arrangement 3013 thereon. In at least one embodiment, the adaptor portion 1240' may be identical to the adaptor portion **1240** described in detail above without the powered rotation 5 bodies and disc members employed by adapter 1240. In other embodiments, the adaptor portion 1240' may be identical to adaptor portion 1240. Still other modifications which are considered to be within the spirit and scope of the various forms of the present invention may employ one or more of the 10 mechanical motions (i.e., rotary motion(s)) from the tool holder portion 1270 (as described hereinabove) to power/ actuate the transmission arrangement 3013 while also employing one or more motors within the tool mounting portion 3010 to power one or more other components of the 15 surgical end effector. In addition, while the end effector of the depicted embodiment comprises an endocutter, those of ordinary skill in the art will understand that the unique and novel attributes of the depicted embodiment may be effectively employed in connection with other types of surgical end 20 effectors without departing from the spirit and scope of various forms of the present invention.

In various embodiments, the tool mounting plate 3012 is configured to at least house a first firing motor 3011 for supplying firing and retraction motions to the knife bar 3003 25 which is coupled to or otherwise operably interfaces with the cutting instrument 3002. The tool mounting plate 3012 has an array of electrical connecting pins 3014 which are configured to interface with the slots 1258 (FIG. 21) in the adapter 1240'. Such arrangement permits the controller 1001 of the robotic system 1000 to provide control signals to the electronic control circuit 3020 of the surgical tool 3000. While the interface is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like.

Control circuit 3020 is shown in schematic form in FIG. 52. In one form or embodiment, the control circuit 3020 includes a power supply in the form of a battery 3022 that is coupled to an on-off solenoid powered switch 3024. Control circuit 3020 40 further includes an on/off firing solenoid 3026 that is coupled to a double pole switch 3028 for controlling the rotational direction of the motor 3011. Thus, when the controller 1001 of the robotic system 1000 supplies an appropriate control signal, switch 3024 will permit battery 3022 to supply power 45 to the double pole switch 3028. The controller 1001 of the robotic system 1000 will also supply an appropriate signal to the double pole switch 3028 to supply power to the motor 3011. When it is desired to fire the surgical end effector (i.e., drive the cutting instrument 3002 distally through tissue 50 clamped in the surgical end effector, the double pole switch 3028 will be in a first position. When it is desired to retract the cutting instrument 3002 to the starting position, the double pole switch 3028 will be moved to the second position by the

Various embodiments of the surgical tool 3000 also employ a gear box 3030 that is sized, in cooperation with a firing gear train 3031 that, in at least one non-limiting embodiment, comprises a firing drive gear 3032 that is in meshing engagement with a firing driven gear 3034 for generating a desired 60 amount of driving force necessary to drive the cutting instrument 3002 through tissue and to drive and form staples in the various manners described herein. In the embodiment depicted in FIG. 52, the driven gear 3034 is coupled to a screw shaft 3036 that is in threaded engagement with a screw nut arrangement 3038 that is constrained to move axially (represented by arrow "D"). The screw nut arrangement 3038 is

attached to the firing bar 3003. Thus, by rotating the screw shaft 3036 in a first direction, the cutting instrument 3002 is driven in the distal direction "DD" and rotating the screw shaft in an opposite second direction, the cutting instrument 3002 may be retracted in the proximal direction "PD".

FIG. 53 illustrates a portion of another surgical tool 3000' that is substantially identical to tool 3000 described above, except that the driven gear 3034 is attached to a drive shaft 3040. The drive shaft 3040 is attached to a second driver gear 3042 that is in meshing engagement with a third driven gear 3044 that is in meshing engagement with a screw 3046 coupled to the firing bar 3003.

FIG. 54 illustrates another surgical tool 3200 that may be effectively used in connection with a robotic system 1000. In this embodiment, the surgical tool 3200 includes a surgical end effector 3212 that in one non-limiting form, comprises a component portion that is selectively movable between first and second positions relative to at least one other end effector component portion. As will be discussed in further detail below, the surgical tool 3200 employs on-board motors for powering various components of a transmission arrangement 3305. The surgical end effector 3212 includes an elongated channel 3222 that operably supports a surgical staple cartridge 3234. The elongated channel 3222 has a proximal end 3223 that slidably extends into a hollow elongated shaft assembly 3208 that is coupled to a tool mounting portion 3300. In addition, the surgical end effector 3212 includes an anvil 3224 that is pivotally coupled to the elongated channel 3222 by a pair of trunnions 3225 that are received within corresponding openings 3229 in the elongated channel 3222. A distal end portion 3209 of the shaft assembly 3208 includes an opening 3245 into which a tab 3227 on the anvil 3224 is inserted in order to open the anvil 3224 as the elongated channel 3222 is moved axially in the proximal direction "PD" relative to the distal end portion 3209 of the shaft assembly **3208**. In various embodiments, a spring (not shown) may be employed to bias the anvil 3224 to the open position.

As indicated above, the surgical tool 3200 includes a tool mounting portion 3300 that includes a tool mounting plate 3302 that is configured to operably support the transmission arrangement 3305 and to mountingly interface with the adaptor portion 1240' which is coupled to the robotic system 1000 in the various manners described above. In at least one embodiment, the adaptor portion 1240' may be identical to the adaptor portion 1240 described in detail above without the powered disc members employed by adapter 1240. In other embodiments, the adaptor portion 1240' may be identical to adaptor portion 1240. However, in such embodiments, because the various components of the surgical end effector **3212** are all powered by motor(s) in the tool mounting portion 3300, the surgical tool 3200 will not employ or require any of the mechanical (i.e., non-electrical) actuation motions from the tool holder portion 1270 to power the surgical end effector 3200 components. Still other modifications which are considered to be within the spirit and scope of the various forms of the present invention may employ one or more of the mechanical motions from the tool holder portion 1270 (as described hereinabove) to power/actuate one or more of the surgical end effector components while also employing one or more motors within the tool mounting portion to power one or more other components of the surgical end effector.

In various embodiments, the tool mounting plate 3302 is configured to support a first firing motor 3310 for supplying firing and retraction motions to the transmission arrangement 3305 to drive a knife bar 3335 that is coupled to a cutting instrument 3332 of the type described above. As can be seen in FIG. 54, the tool mounting plate 3212 has an array of

electrical connecting pins 3014 which are configured to interface with the slots 1258 (FIG. 21) in the adapter 1240'. Such arrangement permits the controller 1001 of the robotic system 1000 to provide control signals to the electronic control circuits 3320, 3340 of the surgical tool 3200. While the interface 5 is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like.

In one form or embodiment, the first control circuit 3320 10 includes a first power supply in the form of a first battery 3322 that is coupled to a first on-off solenoid powered switch 3324. The first firing control circuit 3320 further includes a first on/off firing solenoid 3326 that is coupled to a first double pole switch 3328 for controlling the rotational direction of the 15 first firing motor 3310. Thus, when the robotic controller 1001 supplies an appropriate control signal, the first switch 3324 will permit the first battery 3322 to supply power to the first double pole switch 3328. The robotic controller 1001 will also supply an appropriate signal to the first double pole 20 switch 3328 to supply power to the first firing motor 3310. When it is desired to fire the surgical end effector (i.e., drive the cutting instrument 3232 distally through tissue clamped in the surgical end effector 3212, the first switch 3328 will be positioned in a first position by the robotic controller 1001. 25 When it is desired to retract the cutting instrument 3232 to the starting position, the robotic controller 1001 will send the appropriate control signal to move the first switch 3328 to the second position.

Various embodiments of the surgical tool **3200** also employ 30 a first gear box 3330 that is sized, in cooperation with a firing drive gear 3332 coupled thereto that operably interfaces with a firing gear train 3333. In at least one non-limiting embodiment, the firing gear train 333 comprises a firing driven gear 3334 that is in meshing engagement with drive gear 3332, for 35 generating a desired amount of driving force necessary to drive the cutting instrument 3232 through tissue and to drive and form staples in the various manners described herein. In the embodiment depicted in FIG. 54, the driven gear 3334 is coupled to a drive shaft 3335 that has a second driven gear 40 3336 coupled thereto. The second driven gear 3336 is supported in meshing engagement with a third driven gear 3337 that is in meshing engagement with a fourth driven gear 3338. The fourth driven gear 3338 is in meshing engagement with a threaded proximal portion 3339 of the knife bar 3235 that is 45 constrained to move axially. Thus, by rotating the drive shaft 3335 in a first direction, the cutting instrument 3232 is driven in the distal direction "DD" and rotating the drive shaft 3335 in an opposite second direction, the cutting instrument 3232 may be retracted in the proximal direction "PD".

As indicated above, the opening and closing of the anvil **3224** is controlled by axially moving the elongated channel 3222 relative to the elongated shaft assembly 3208. The axial movement of the elongated channel 3222 is controlled by a closure control system 3339. In various embodiments, the 55 closure control system 3339 includes a closure shaft 3340 which has a hollow threaded end portion 3341 that threadably engages a threaded closure rod 3342. The threaded end portion 3341 is rotatably supported in a spine shaft 3343 that operably interfaces with the tool mounting portion 3300 and extends through a portion of the shaft assembly 3208 as shown. The closure system 3339 further comprises a closure control circuit 3350 that includes a second power supply in the form of a second battery 3352 that is coupled to a second on-off solenoid powered switch 3354. Closure control circuit 65 3350 further includes a second on/off firing solenoid 3356 that is coupled to a second double pole switch 3358 for

controlling the rotation of a second closure motor 3360. Thus, when the robotic controller 1001 supplies an appropriate control signal, the second switch 3354 will permit the second battery 3352 to supply power to the second double pole switch 3354. The robotic controller 1001 will also supply an appropriate signal to the second double pole switch 3358 to supply power to the second motor 3360. When it is desired to close the anvil 3224, the second switch 3348 will be in a first position. When it is desired to open the anvil 3224, the second switch 3348 will be moved to a second position.

Various embodiments of tool mounting portion 3300 also employ a second gear box 3362 that is coupled to a closure drive gear 3364. The closure drive gear 3364 is in meshing engagement with a closure gear train 3363. In various nonlimiting forms, the closure gear train 3363 includes a closure driven gear 3365 that is attached to a closure drive shaft 3366. Also attached to the closure drive shaft 3366 is a closure drive gear 3367 that is in meshing engagement with a closure shaft gear 3360 attached to the closure shaft 3340. FIG. 54 depicts the end effector 3212 in the open position. As indicated above, when the threaded closure rod 3342 is in the position depicted in FIG. 54, a spring (not shown) biases the anvil 3224 to the open position. When it is desired to close the anvil 3224, the robotic controller 1001 will activate the second motor 3360 to rotate the closure shaft 3340 to draw the threaded closure rod 3342 and the channel 3222 in the proximal direction 'PD'. As the anvil 3224 contacts the distal end portion 3209 of the shaft 3208, the anvil 3224 is pivoted to the closed position.

A method of operating the surgical tool 3200 will now be described. Once the tool mounting portion 3302 has be operably coupled to the tool holder 1270 of the robotic system 1000, the robotic system 1000 can orient the end effector 3212 in position adjacent the target tissue to be cut and stapled. If the anvil 3224 is not already in the open position, the robotic controller 1001 may activate the second closure motor 3360 to drive the channel 3222 in the distal direction to the position depicted in FIG. 54. Once the robotic controller 1001 determines that the surgical end effector 3212 is in the open position by sensor(s) in the and effector and/or the tool mounting portion 3300, the robotic controller 1001 may provide the surgeon with a signal to inform the surgeon that the anvil 3224 may then be closed. Once the target tissue is positioned between the open anvil 3224 and the surgical staple cartridge 3234, the surgeon may then commence the closure process by activating the robotic controller 1001 to apply a closure control signal to the second closure motor 3360. The second closure motor 3360 applies a rotary motion to the closure shaft 3340 to draw the channel 3222 in the proximal direction "PD" until the anvil 3224 has been pivoted to the closed position. Once the robotic controller 1001 determines that the anvil 3224 has been moved to the closed position by sensor(s) in the surgical end effector 3212 and/or in the tool mounting portion 3300 that are in communication with the robotic control system, the motor 3360 may be deactivated. Thereafter, the firing process may be commenced either manually by the surgeon activating a trigger, button, etc. on the controller 1001 or the controller 1001 may automatically commence the firing process.

To commence the firing process, the robotic controller 1001 activates the firing motor 3310 to drive the firing bar 3235 and the cutting instrument 3232 in the distal direction "DD". Once robotic controller 1001 has determined that the cutting instrument 3232 has moved to the ending position within the surgical staple cartridge 3234 by means of sensors in the surgical end effector 3212 and/or the motor drive portion 3300, the robotic controller 1001 may provide the surgeon with an indication signal. Thereafter the surgeon may

manually activate the first motor 3310 to retract the cutting instrument 3232 to the starting position or the robotic controller 1001 may automatically activate the first motor 3310 to retract the cutting element 3232.

The embodiment depicted in FIG. 54 does not include an 5 articulation joint. FIGS. 55 and 56 illustrate surgical tools 3200' and 3200" that have end effectors 3212', 3212", respectively that may be employed with an elongated shaft embodiment that has an articulation joint of the various types disclosed herein. For example, as can be seen in FIG. 55, a 10 threaded closure shaft 3342 is coupled to the proximal end 3223 of the elongated channel 3222 by a flexible cable or other flexible member 3345. The location of an articulation joint (not shown) within the elongated shaft assembly 3208 will coincide with the flexible member 3345 to enable the 15 flexible member 3345 to accommodate such articulation. In addition, in the above-described embodiment, the flexible member 3345 is rotatably affixed to the proximal end portion 3223 of the elongated channel 3222 to enable the flexible member 3345 to rotate relative thereto to prevent the flexible 20 member 3229 from "winding up" relative to the channel 3222. Although not shown, the cutting element may be driven in one of the above described manners by a knife bar that can also accommodate articulation of the elongated shaft assembly. FIG. 56 depicts a surgical end effector 3212" that is 25 substantially identical to the surgical end effector 3212 described above, except that the threaded closure rod 3342 is attached to a closure nut 3347 that is constrained to only move axially within the elongated shaft assembly 3208. The flexible member 3345 is attached to the closure nut 3347. Such 30 arrangement also prevents the threaded closure rod 3342 from winding-up the flexible member 3345. A flexible knife bar 3235' may be employed to facilitate articulation of the surgical end effector 3212"

The surgical tools 3200, 3200', and 3200" described above 35 may also employ anyone of the cutting instrument embodiments described herein. As described above, the anvil of each of the end effectors of these tools is closed by drawing the elongated channel into contact with the distal end of the elongated shaft assembly. Thus, once the target tissue has 40 been located between the staple cartridge 3234 and the anvil 3224, the robotic controller 1001 can start to draw the channel 3222 inward into the shaft assembly 3208. In various embodiments, however, to prevent the end effector 3212, 3212', 3212" from moving the target tissue with the end effector 45 during this closing process, the controller 1001 may simultaneously move the tool holder and ultimately the tool such to compensate for the movement of the elongated channel 3222 so that, in effect, the target tissue is clamped between the anvil and the elongated channel without being otherwise moved.

FIGS. 57-59 depict another surgical tool embodiment 3201 that is substantially identical to surgical tool 3200" described above, except for the differences discussed below. In this embodiment, the threaded closure rod 3342' has variable pitched grooves. More specifically, as can be seen in FIG. 58, 55 the closure rod 3342' has a distal groove section 3380 and a proximal groove section 3382. The distal and proximal groove sections 3380, 3382 are configured for engagement with a lug 3390 supported within the hollow threaded end portion 3341'. As can be seen in FIG. 58, the distal groove 60 section 3380 has a finer pitch than the groove section 3382. Thus, such variable pitch arrangement permits the elongated channel 3222 to be drawn into the shaft 3208 at a first speed or rate by virtue of the engagement between the lug 3390 and the proximal groove segment 3382. When the lug 3390 65 engages the distal groove segment, the channel 3222 will be drawn into the shaft 3208 at a second speed or rate. Because

44

the proximal groove segment 3382 is coarser than the distal groove segment 3380, the first speed will be greater than the second speed. Such arrangement serves to speed up the initial closing of the end effector for tissue manipulation and then after the tissue has been properly positioned therein, generate the amount of closure forces to properly clamp the tissue for cutting and sealing. Thus, the anvil 3234 initially closes fast with a lower force and then applies a higher closing force as the anvil closes more slowly.

The surgical end effector opening and closing motions are employed to enable the user to use the end effector to grasp and manipulate tissue prior to fully clamping it in the desired location for cutting and sealing. The user may, for example, open and close the surgical end effector numerous times during this process to orient the end effector in a proper position which enables the tissue to be held in a desired location. Thus, in at least some embodiments, to produce the high loading for firing, the fine thread may require as many as 5-10 full rotations to generate the necessary load. In some cases, for example, this action could take as long as 2-5 seconds. If it also took an equally long time to open and close the end effector each time during the positioning/tissue manipulation process, just positioning the end effector may take an undesirably long time. If that happens, it is possible that a user may abandon such use of the end effector for use of a conventional grasper device. Use of graspers, etc. may undesirably increase the costs associated with completing the surgical procedure.

The above-described embodiments employ a battery or batteries to power the motors used to drive the end effector components. Activation of the motors is controlled by the robotic system 1000. In alternative embodiments, the power supply may comprise alternating current "AC" that is supplied to the motors by the robotic system 1000. That is, the AC power would be supplied from the system powering the robotic system 1000 through the tool holder and adapter. In still other embodiments, a power cord or tether may be attached to the tool mounting portion 3300 to supply the requisite power from a separate source of alternating or direct current.

In use, the controller 1001 may apply an initial rotary motion to the closure shaft 3340 (FIG. 54) to draw the elongated channel 3222 axially inwardly into the elongated shaft assembly 3208 and move the anvil from a first position to an intermediate position at a first rate that corresponds with the point wherein the distal groove section 3380 transitions to the proximal groove section 3382. Further application of rotary motion to the closure shaft 3340 will cause the anvil to move from the intermediate position to the closed position relative to the surgical staple cartridge. When in the closed position, the tissue to be cut and stapled is properly clamped between the anvil and the surgical staple cartridge.

FIGS. 60-64 illustrate another surgical tool embodiment 3400 of the present invention. This embodiment includes an elongated shaft assembly 3408 that extends from a tool mounting portion 3500. The elongated shaft assembly 3408 includes a rotatable proximal closure tube segment 3410 that is rotatably journaled on a proximal spine member 3420 that is rigidly coupled to a tool mounting plate 3502 of the tool mounting portion 3500. The proximal spine member 3420 has a distal end 3422 that is coupled to an elongated channel portion 3522 of a surgical end effector 3412. For example, in at least one embodiment, the elongated channel portion 3522 has a distal end portion 3523 that "hookingly engages" the distal end 3422 of the spine member 3420. The elongated channel 3522 is configured to support a surgical staple cartridge 3534 therein. This embodiment may employ one of the

various cutting instrument embodiments disclosed herein to sever tissue that is clamped in the surgical end effector 3412 and fire the staples in the staple cartridge 3534 into the severed tissue.

Surgical end effector 3412 has an anvil 3524 that is pivot- 5 ally coupled to the elongated channel 3522 by a pair of trunnions 3525 that are received in corresponding openings 3529 in the elongated channel 3522. The anvil 3524 is moved between the open (FIG. 60) and closed positions (FIGS. 61-63) by a distal closure tube segment 3430. A distal end 10 portion 3432 of the distal closure tube segment 3430 includes an opening 3445 into which a tab 3527 on the anvil 3524 is inserted in order to open and close the anvil 3524 as the distal closure tube segment 3430 moves axially relative thereto. In various embodiments, the opening 3445 is shaped such that as 15 the closure tube segment 3430 is moved in the proximal direction, the closure tube segment 3430 causes the anvil 3524 to pivot to an open position. In addition or in the alternative, a spring (not shown) may be employed to bias the anvil 3524 to the open position.

As can be seen in FIGS. 60-63, the distal closure tube segment 3430 includes a lug 3442 that extends from its distal end 3440 into threaded engagement with a variable pitch groove/thread 3414 formed in the distal end 3412 of the rotatable proximal closure tube segment 3410. The variable 25 pitch groove/thread 3414 has a distal section 3416 and a proximal section 3418. The pitch of the distal groove/thread section 3416 is finer than the pitch of the proximal groove/thread section 3418. As can also be seen in FIGS. 60-63, the distal closure tube segment 3430 is constrained for axial 30 movement relative to the spine member 3420 by an axial retainer pin 3450 that is received in an axial slot 3424 in the distal end of the spine member 3420.

As indicated above, the anvil 2524 is open and closed by rotating the proximal closure tube segment 3410. The variable pitch thread arrangement permits the distal closure tube segment 3430 to be driven in the distal direction "DD" at a first speed or rate by virtue of the engagement between the lug 3442 and the proximal groove/thread section 3418. When the lug 3442 engages the distal groove/thread section 3416, the 40 distal closure tube segment 3430 will be driven in the distal direction at a second speed or rate. Because the proximal groove/thread section 3418 is coarser than the distal groove/thread segment 3416, the first speed will be greater than the second speed.

In at least one embodiment, the tool mounting portion 3500 is configured to receive a corresponding first rotary motion from the robotic controller 1001 and convert that first rotary motion to a primary rotary motion for rotating the rotatable proximal closure tube segment 3410 about a longitudinal tool 50 axis LT-LT. As can be seen in FIG. 64, a proximal end 3460 of the proximal closure tube segment 3410 is rotatably supported within a cradle arrangement 3504 attached to a tool mounting plate 3502 of the tool mounting portion 3500. A rotation gear 3462 is formed on or attached to the proximal 55 end 3460 of the closure tube segment 3410 for meshing engagement with a rotation drive assembly 3470 that is operably supported on the tool mounting plate 3502. In at least one embodiment, a rotation drive gear 3472 is coupled to a corresponding first one of the driven discs or elements 1304 on 60 the adapter side of the tool mounting plate 3502 when the tool mounting portion 3500 is coupled to the tool holder 1270. See FIGS. 22 and 64. The rotation drive assembly 3470 further comprises a rotary driven gear 3474 that is rotatably supported on the tool mounting plate 3502 in meshing engage- 65 ment with the rotation gear 3462 and the rotation drive gear 3472. Application of a first rotary control motion from the

robotic controller 1001 through the tool holder 1270 and the adapter 1240 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 3472 by virtue of being operably coupled thereto. Rotation of the rotation drive gear 3472 ultimately results in the rotation of the closure tube segment 3410 to open and close the anvil 3524 as described above.

46

As indicated above, the surgical end effector 3412 employs a cutting instrument of the type and constructions described above. FIG. 64 illustrates one form of knife drive assembly 3480 for axially advancing a knife bar 3492 that is attached to such cutting instrument. One form of the knife drive assembly 3480 comprises a rotary drive gear 3482 that is coupled to a corresponding third one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 3502 when the tool drive portion 3500 is coupled to the tool holder 1270. See FIGS. 22 and 64. The knife drive assembly 3480 further comprises a first rotary driven gear assembly 3484 that is rotatably supported on the tool mounting plate 5200. The first 20 rotary driven gear assembly 3484 is in meshing engagement with a third rotary driven gear assembly 3486 that is rotatably supported on the tool mounting plate 3502 and which is in meshing engagement with a fourth rotary driven gear assembly 3488 that is in meshing engagement with a threaded portion 3494 of drive shaft assembly 3490 that is coupled to the knife bar 3492. Rotation of the rotary drive gear 3482 in a second rotary direction will result in the axial advancement of the drive shaft assembly 3490 and knife bar 3492 in the distal direction "DD". Conversely, rotation of the rotary drive gear 3482 in a secondary rotary direction (opposite to the second rotary direction) will cause the drive shaft assembly 3490 and the knife bar 3492 to move in the proximal direction.

FIGS. **65-74** illustrate another surgical tool **3600** embodiment of the present invention that may be employed in connection with a robotic system **1000**. As can be seen in FIG. **65**, the tool **3600** includes an end effector in the form of a disposable loading unit **3612**. Various forms of disposable loading units that may be employed in connection with tool **3600** are disclosed, for example, in U.S. Patent Application Publication No. US 2009/0206131 A1, entitled END EFFECTOR ARRANGEMENTS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, which published on Aug. 20, 2009, the disclosure of which is herein incorporated by reference in its entirety.

In at least one form, the disposable loading unit 3612 includes an anvil assembly 3620 that is supported for pivotal travel relative to a carrier 3630 that operably supports a staple cartridge 3640 therein. A mounting assembly 3650 is pivotally coupled to the cartridge carrier 3630 to enable the carrier 3630 to pivot about an articulation axis AA-AA relative to a longitudinal tool axis LT-LT. Referring to FIG. 70, mounting assembly 3650 includes upper and lower mounting portions 3652 and 3654. Each mounting portion includes a threaded bore 3656 on each side thereof dimensioned to receive threaded bolts (not shown) for securing the proximal end of carrier 3630 thereto. A pair of centrally located pivot members 3658 extends between upper and lower mounting portions via a pair of coupling members 3660 which engage a distal end of a housing portion 3662. Coupling members 3660 each include an interlocking proximal portion 3664 configured to be received in grooves 3666 formed in the proximal end of housing portion 3662 to retain mounting assembly 3650 and housing portion 3662 in a longitudinally fixed position in relation thereto.

In various forms, housing portion 3662 of disposable loading unit 3614 includes an upper housing half 3670 and a lower housing half 3672 contained within an outer casing 3674. The

proximal end of housing half 3670 includes engagement nubs 3676 for releasably engaging an elongated shaft 3700 and an insertion tip 3678. Nubs 3676 form a bayonet-type coupling with the distal end of the elongated shaft 3700 which will be discussed in further detail below. Housing halves 3670, 3672 5 define a channel 3674 for slidably receiving axial drive assembly 3680. A second articulation link 3690 is dimensioned to be slidably positioned within a slot 3679 formed between housing halves 3670, 3672. A pair of blow out plates **3691** are positioned adjacent the distal end of housing portion 10 3662 adjacent the distal end of axial drive assembly 3680 to prevent outward bulging of drive assembly 3680 during articulation of carrier 3630.

In various embodiments, the second articulation link 3690 includes at least one elongated metallic plate. Preferably, two 15 or more metallic plates are stacked to form link 3690. The proximal end of articulation link 3690 includes a hook portion 3692 configured to engage first articulation link 3710 extending through the elongated shaft 3700. The distal end of the second articulation link 3690 includes a loop 3694 dimen- 20 sioned to engage a projection formed on mounting assembly 3650. The projection is laterally offset from pivot pin 3658 such that linear movement of second articulation link 3690 causes mounting assembly 3650 to pivot about pivot pins 3658 to articulate the carrier 3630.

In various forms, axial drive assembly 3680 includes an elongated drive beam 3682 including a distal working head 3684 and a proximal engagement section 3685. Drive beam 3682 may be constructed from a single sheet of material or, preferably, multiple stacked sheets. Engagement section 30 3685 includes a pair of engagement fingers which are dimensioned and configured to mountingly engage a pair of corresponding retention slots formed in drive member 3686. Drive member 3686 includes a proximal porthole 3687 configured to receive the distal end 3722 of control rod 2720 (See FIG. 35 74) when the proximal end of disposable loading unit 3614 is engaged with elongated shaft 3700 of surgical tool 3600.

Referring to FIGS. 65 and 72-74, to use the surgical tool 3600, a disposable loading unit 3612 is first secured to the distal end of elongated shaft 3700. It will be appreciated that 40 connector portion 3740. In at least one such embodiment, the the surgical tool 3600 may include an articulating or a nonarticulating disposable loading unit. To secure the disposable loading unit 3612 to the elongated shaft 3700, the distal end 3722 of control rod 3720 is inserted into insertion tip 3678 of disposable loading unit 3612, and insertion tip 3678 is slid 45 longitudinally into the distal end of the elongated shaft 3700 in the direction indicated by arrow "A" in FIG. 72 such that hook portion 3692 of second articulation link 3690 slides within a channel 3702 in the elongated shaft 3700. Nubs 3676 will each be aligned in a respective channel (not shown) in 50 elongated shaft 3700. When hook portion 3692 engages the proximal wall 3704 of channel 3702, disposable loading unit 3612 is rotated in the direction indicated by arrow "B" in FIGS. 71 and 74 to move hook portion 3692 of second articulation link 3690 into engagement with finger 3712 of first 55 articulation link 3710. Nubs 3676 also form a "bayonet-type" coupling within annular channel 3703 in the elongated shaft 3700. During rotation of loading unit 3612, nubs 3676 engage cam surface 3732 (FIG. 72) of block plate 3730 to initially move plate 3730 in the direction indicated by arrow "C" in 60 FIG. 72 to lock engagement member 3734 in recess 3721 of control rod 3720 to prevent longitudinal movement of control rod 3720 during attachment of disposable loading unit 3612. During the final degree of rotation, nubs 3676 disengage from cam surface 3732 to allow blocking plate 3730 to move in the 65 direction indicated by arrow "D" in FIGS. 71 and 74 from behind engagement member 3734 to once again permit lon-

gitudinal movement of control rod 3720. While the abovedescribed attachment method reflects that the disposable loading unit 3612 is manipulated relative to the elongated shaft 3700, the person of ordinary skill in the art will appreciate that the disposable loading unit 3612 may be supported in a stationary position and the robotic system 1000 may manipulate the elongated shaft portion 3700 relative to the disposable loading unit 3612 to accomplish the above-described coupling procedure.

FIG. 75 illustrates another disposable loading unit 3612' that is attachable in a bayonet-type arrangement with the elongated shaft 3700' that is substantially identical to shaft 3700 except for the differences discussed below. As can be seen in FIG. 75, the elongated shaft 3700' has slots 3705 that extend for at least a portion thereof and which are configured to receive nubs 3676 therein. In various embodiments, the disposable loading unit 3612' includes arms 3677 extending therefrom which, prior to the rotation of disposable loading unit 3612', can be aligned, or at least substantially aligned, with nubs 3676 extending from housing portion 3662. In at least one embodiment, arms 3677 and nubs 3676 can be inserted into slots 3705 in elongated shaft 3700', for example, when disposable loading unit 3612' is inserted into elongated shaft 3700'. When disposable loading unit 3612' is rotated, arms 3677 can be sufficiently confined within slots 3705 such that slots 3705 can hold them in position, whereas nubs 3676 can be positioned such that they are not confined within slots 3705 and can be rotated relative to arms 3677. When rotated, the hook portion 3692 of the articulation link 3690 is engaged with the first articulation link 3710 extending through the elongated shaft 3700'.

Other methods of coupling the disposable loading units to the end of the elongated shaft may be employed. For example, as shown in FIGS. 76 and 77, disposable loading unit 3612" can include connector portion 3613 which can be configured to be engaged with connector portion 3740 of the elongated shaft 3700". In at least one embodiment, connector portion 3613 can include at least one projection and/or groove which can be mated with at least one projection and/or groove of connector portions can include co-operating dovetail portions. In various embodiments, the connector portions can be configured to interlock with one another and prevent, or at least inhibit, distal and/or proximal movement of disposable loading unit 3612" along axis 3741. In at least one embodiment, the distal end of the axial drive assembly 3680' can include aperture 3681 which can be configured to receive projection 3721 extending from control rod 3720'. In various embodiments, such an arrangement can allow disposable loading unit 3612" to be assembled to elongated shaft 3700 in a direction which is not collinear with or parallel to axis 3741. Although not illustrated, axial drive assembly 3680' and control rod 3720 can include any other suitable arrangement of projections and apertures to operably connect them to each other. Also in this embodiment, the first articulation link 3710 which can be operably engaged with second articulation link

As can be seen in FIGS. 65 and 78, the surgical tool 3600 includes a tool mounting portion 3750. The tool mounting portion 3750 includes a tool mounting plate 3751 that is configured for attachment to the tool drive assembly 1010. The tool mounting portion operably supported a transmission arrangement 3752 thereon. In use, it may be desirable to rotate the disposable loading unit 3612 about the longitudinal tool axis defined by the elongated shaft 3700. In at least one embodiment, the transmission arrangement 3752 includes a rotational transmission assembly 3753 that is configured to

receive a corresponding rotary output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft 3700 (and the disposable loading unit **3612**) about the longitudinal tool axis LT-LT. As can be seen 5 in FIG. 78, a proximal end 3701 of the elongated shaft 3700 is rotatably supported within a cradle arrangement 3754 that is attached to the tool mounting plate 3751 of the tool mounting portion 3750. A rotation gear 3755 is formed on or attached to the proximal end 3701 of the elongated shaft 3700 for meshing engagement with a rotation gear assembly 3756 operably supported on the tool mounting plate 3751. In at least one embodiment, a rotation drive gear 3757 drivingly coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 15 3751 when the tool mounting portion 3750 is coupled to the tool drive assembly 1010. The rotation transmission assembly 3753 further comprises a rotary driven gear 3758 that is rotatably supported on the tool mounting plate 3751 in meshing engagement with the rotation gear 3755 and the rotation 20 drive gear 3757. Application of a first rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 3757 by virtue of being operably coupled thereto. Rotation of the rotation drive 25 gear 3757 ultimately results in the rotation of the elongated shaft 3700 (and the disposable loading unit 3612) about the longitudinal tool axis LT-LT (primary rotary motion).

As can be seen in FIG. 78, a drive shaft assembly 3760 is coupled to a proximal end of the control rod 2720. In various 30 embodiments, the control rod 2720 is axially advanced in the distal and proximal directions by a knife/closure drive transmission 3762. One form of the knife/closure drive assembly 3762 comprises a rotary drive gear 3763 that is coupled to a tions, discs or elements 1304 on the adapter side of the tool mounting plate 3751 when the tool mounting portion 3750 is coupled to the tool holder 1270. The rotary driven gear 3763 is in meshing driving engagement with a gear train, generally depicted as 3764. In at least one form, the gear train 3764 40 further comprises a first rotary driven gear assembly 3765 that is rotatably supported on the tool mounting plate 3751. The first rotary driven gear assembly 3765 is in meshing engagement with a second rotary driven gear assembly 3766 that is rotatably supported on the tool mounting plate 3751 and 45 which is in meshing engagement with a third rotary driven gear assembly 3767 that is in meshing engagement with a threaded portion 3768 of the drive shaft assembly 3760. Rotation of the rotary drive gear 3763 in a second rotary direction will result in the axial advancement of the drive shaft assem- 50 bly 3760 and control rod 2720 in the distal direction "DD". Conversely, rotation of the rotary drive gear 3763 in a secondary rotary direction which is opposite to the second rotary direction will cause the drive shaft assembly 3760 and the control rod 2720 to move in the proximal direction. When the 55 control rod 2720 moves in the distal direction, it drives the drive beam 3682 and the working head 3684 thereof distally through the surgical staple cartridge 3640. As the working head 3684 is driven distally, it operably engages the anvil 3620 to pivot it to a closed position.

The cartridge carrier 3630 may be selectively articulated about articulation axis AA-AA by applying axial articulation control motions to the first and second articulation links 3710 and 3690. In various embodiments, the transmission arrangement 3752 further includes an articulation drive 3770 that is 65 operably supported on the tool mounting plate 3751. More specifically and with reference to FIG. 78, it can be seen that

a proximal end portion 3772 of an articulation drive shaft 3771 configured to operably engage with the first articulation link 3710 extends through the rotation gear 3755 and is rotatably coupled to a shifter rack gear 3774 that is slidably affixed to the tool mounting plate 3751 through slots 3775. The articulation drive 3770 further comprises a shifter drive gear 3776 that is coupled to a corresponding third one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 3751 when the tool mounting portion 3750 is coupled to the tool holder 1270. The articulation drive assembly 3770 further comprises a shifter driven gear 3778 that is rotatably supported on the tool mounting plate 3751 in meshing engagement with the shifter drive gear 3776 and the shifter rack gear 3774. Application of a third rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the corresponding driven element 1304 will thereby cause rotation of the shifter drive gear 3776 by virtue of being operably coupled thereto. Rotation of the shifter drive gear 3776 ultimately results in the axial movement of the shifter gear rack 3774 and the articulation drive shaft 3771. The direction of axial travel of the articulation drive shaft 3771 depends upon the direction in which the shifter drive gear 3776 is rotated by the robotic system 1000. Thus, rotation of the shifter drive gear 3776 in a first rotary direction will result in the axial movement of the articulation drive shaft **3771** in the proximal direction "PD" and cause the cartridge carrier 3630 to pivot in a first direction about articulation axis AA-AA. Conversely, rotation of the shifter drive gear 3776 in a second rotary direction (opposite to the first rotary direction) will result in the axial movement of the articulation drive shaft 3771 in the distal direction "DD" to thereby cause the cartridge carrier 3630 to pivot about articulation axis AA-AA in an opposite direction.

FIG. 79 illustrates yet another surgical tool 3800 embodicorresponding second one of the driven rotatable body por- 35 ment of the present invention that may be employed with a robotic system 1000. As can be seen in FIG. 79, the surgical tool 3800 includes a surgical end effector 3812 in the form of an endocutter 3814 that employs various cable-driven components. Various forms of cable driven endocutters are disclosed, for example, in U.S. Pat. No. 7,726,537, entitled SURGICAL STAPLER WITH UNIVERSAL ARTICULA-TION AND TISSUE PRE-CLAMP, which issued on Jun. 1, 2010, and U.S. Patent Application Publication No. US 2008/ 0308603A1, entitled CABLE DRIVEN SURGICAL STA-PLING AND CUTTING INSTRUMENT IMPROVED CABLE ATTACHMENT ARRANGEMENTS. which published on Dec. 18, 2008, the disclosures of each are herein incorporated by reference in their respective entireties. Such endocutters 3814 may be referred to as a "disposable loading unit" because they are designed to be disposed of after a single use. However, the various unique and novel arrangements of various embodiments of the present invention may also be employed in connection with cable driven end effectors that are reusable.

> As can be seen in FIG. 79, in at least one form, the endocutter 3814 includes an elongated channel 3822 that operably supports a surgical staple cartridge 3834 therein. An anvil 3824 is pivotally supported for movement relative to the surgical staple cartridge 3834. The anvil 3824 has a cam surface 3825 that is configured for interaction with a preclamping collar 3840 that is supported for axial movement relative thereto. The end effector 3814 is coupled to an elongated shaft assembly 3808 that is attached to a tool mounting portion 3900. In various embodiments, a closure cable 3850 is employed to move pre-clamping collar 3840 distally onto and over cam surface 3825 to close the anvil 3824 relative to the surgical staple cartridge 3834 and compress the tissue ther-

ebetween. Preferably, closure cable 3850 attaches to the preclamping collar 3840 at or near point 3841 and is fed through a passageway in anvil 3824 (or under a proximal portion of anvil 3824) and fed proximally through shaft 3808. Actuation of closure cable 3850 in the proximal direction "PD" forces 5 pre-clamping collar 3840 distally against cam surface 3825 to close anvil 3824 relative to staple cartridge assembly 3834. A return mechanism, e.g., a spring, cable system or the like, may be employed to return pre-clamping collar 3840 to a preclamping orientation which re-opens the anvil 3824.

The elongated shaft assembly 3808 may be cylindrical in shape and define a channel 3811 which may be dimensioned to receive a tube adapter 3870. See FIG. 80. In various embodiments, the tube adapter 3870 may be slidingly received in friction-fit engagement with the internal channel 15 of elongated shaft 3808. The outer surface of the tube adapter 3870 may further include at least one mechanical interface, e.g., a cutout or notch 3871, oriented to mate with a corresponding mechanical interface, e.g., a radially inwardly inner periphery of internal channel 3811 to lock the tube adapter 3870 to the elongated shaft 3808. In various embodiments, the distal end of tube adapter 3870 may include a pair of opposing flanges 3872a and 3872b which define a cavity for pivotably receiving a pivot block 3873 therein. Each 25 flange 3872a and 3872b may include an aperture 3874a and **3874***b* that is oriented to receive a pivot pin **3875** that extends through an aperture in pivot block 3873 to allow pivotable movement of pivot block 3873 about an axis that is perpendicular to longitudinal tool axis "LT-LT". The channel 3822 30 may be formed with two upwardly extending flanges 3823a, 3823b that have apertures therein, which are dimensioned to receive a pivot pin 3827. In turn, pivot pin 3875 mounts through apertures in pivot block 3873 to permit rotation of the surgical end effector 3814 about the "Y" axis as needed 35 during a given surgical procedure. Rotation of pivot block 3873 about pin 3875 along "Z" axis rotates the surgical end effector 3814 about the "Z" axis. See FIG. 80. Other methods of fastening the elongated channel 3822 to the pivot block 3873 may be effectively employed without departing from 40 the spirit and scope of the present invention.

The surgical staple cartridge 3834 can be assembled and mounted within the elongated channel 3822 during the manufacturing or assembly process and sold as part of the surgical end effector 3812, or the surgical staple cartridge 3834 may 45 be designed for selective mounting within the elongated channel 3822 as needed and sold separately, e.g., as a single use replacement, replaceable or disposable staple cartridge assembly. It is within the scope of this disclosure that the surgical end effector 3812 may be pivotally, operatively, or 50 integrally attached, for example, to distal end 3809 of the elongated shaft assembly 3808 of a disposable surgical stapler. As is known, a used or spent disposable loading unit 3814 can be removed from the elongated shaft assembly 3808 and replaced with an unused disposable unit. The endocutter 55 **3814** may also preferably include an actuator, preferably a dynamic clamping member 3860, a sled 3862, as well as staple pushers (not shown) and staples (not shown) once an unspent or unused cartridge 3834 is mounted in the elongated channel 3822. See FIG. 80.

In various embodiments, the dynamic clamping member 3860 is associated with, e.g., mounted on and rides on, or with or is connected to or integral with and/or rides behind sled 3862. It is envisioned that dynamic clamping member 3860 can have cam wedges or cam surfaces attached or integrally 65 formed or be pushed by a leading distal surface thereof. In various embodiments, dynamic clamping member 3860 may

include an upper portion 3863 having a transverse aperture 3864 with a pin 3865 mountable or mounted therein, a central support or upward extension 3866 and substantially T-shaped bottom flange 3867 which cooperate to slidingly retain dynamic clamping member 3860 along an ideal cutting path during longitudinal, distal movement of sled 3862. The leading cutting edge 3868, here, knife blade 3869, is dimensioned to ride within slot 3835 of staple cartridge assembly 3834 and separate tissue once stapled. As used herein, the term "knife assembly" may include the aforementioned dynamic clamping member 3860, knife 3869, and sled 3862 or other knife/ beam/sled drive arrangements and cutting instrument arrangements. In addition, the various embodiments of the present invention may be employed with knife assembly/ cutting instrument arrangements that may be entirely supported in the staple cartridge 3834 or partially supported in the staple cartridge 3834 and elongated channel 3822 or entirely supported within the elongated channel 3822.

In various embodiments, the dynamic clamping member extending protrusion or detent (not shown), disposed on the 20 3860 may be driven in the proximal and distal directions by a cable drive assembly 3870. In one non-limiting form, the cable drive assembly comprises a pair of advance cables 3880, 3882 and a firing cable 3884. FIGS. 81 and 82 illustrate the cables 3880, 3882, 3884 in diagrammatic form. As can be seen in those Figures, a first advance cable 3880 is operably supported on a first distal cable transition support 3885 which may comprise, for example, a pulley, rod, capstan, etc. that is attached to the distal end of the elongated channel 3822 and a first proximal cable transition support 3886 which may comprise, for example, a pulley, rod, capstan, etc. that is operably supported by the elongated channel 3822. A distal end 3881 of the first advance cable 3880 is affixed to the dynamic clamping assembly 3860. The second advance cable 3882 is operably supported on a second distal cable transition support 3887 which may, for example, comprise a pulley, rod, capstan etc. that is mounted to the distal end of the elongated channel 3822 and a second proximal cable transition support 3888 which may, for example, comprise a pulley, rod, capstan, etc. mounted to the proximal end of the elongated channel 3822. The proximal end 3883 of the second advance cable 3882 may be attached to the dynamic clamping assembly 3860. Also in these embodiments, an endless firing cable 3884 is employed and journaled on a support 3889 that may comprise a pulley, rod, capstan, etc. mounted within the elongated shaft 3808. In one embodiment, the retract cable 3884 may be formed in a loop and coupled to a connector 3889' that is fixedly attached to the first and second advance cables 3880, 3882.

> Various non-limiting embodiments of the present invention include a cable drive transmission 3920 that is operably supported on a tool mounting plate 3902 of the tool mounting portion 3900. The tool mounting portion 3900 has an array of electrical connecting pins 3904 which are configured to interface with the slots 1258 (FIG. 21) in the adapter 1240'. Such arrangement permits the robotic system 1000 to provide control signals to a control circuit 3910 of the tool 3800. While the interface is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like.

> Control circuit 3910 is shown in schematic form in FIG. 79. In one form or embodiment, the control circuit 3910 includes a power supply in the form of a battery 3912 that is coupled to an on-off solenoid powered switch 3914. In other embodiments, however, the power supply may comprise a source of alternating current. Control circuit 3910 further includes an on/off solenoid 3916 that is coupled to a double pole switch

3918 for controlling motor rotation direction. Thus, when the robotic system 1000 supplies an appropriate control signal, switch 3914 will permit battery 3912 to supply power to the double pole switch 3918. The robotic system 1000 will also supply an appropriate signal to the double pole switch 3918 to 5 supply power to a shifter motor 3922.

Turning to FIGS. 83-88, at least one embodiment of the cable drive transmission 3920 comprises a drive pulley 3930 that is operably mounted to a drive shaft 3932 that is attached to a driven element 1304 of the type and construction 10 described above that is designed to interface with a corresponding drive element 1250 of the adapter 1240. See FIGS. 18 and 84. Thus, when the tool mounting portion 3900 is operably coupled to the tool holder 1270, the robot system 1000 can apply rotary motion to the drive pulley 3930 in a 15 desired direction. A first drive member or belt 3934 drivingly engages the drive pulley 3930 and a second drive shaft 3936 that is rotatably supported on a shifter yoke 3940. The shifter yoke 3940 is operably coupled to the shifter motor 3922 such that rotation of the shaft 3923 of the shifter motor 3922 in a 20 first direction will shift the shifter yoke in a first direction "FD" and rotation of the shifter motor shaft 3923 in a second direction will shift the shifter yoke 3940 in a second direction "SD". Other embodiments of the present invention may employ a shifter solenoid arrangement for shifting the shifter 25 yoke in said first and second directions.

As can be seen in FIGS. 83-86, a closure drive gear 3950 mounted to a second drive shaft 3936 and is configured to selectively mesh with a closure drive assembly, generally designated as 3951. Likewise a firing drive gear 3960 is also mounted to the second drive shaft 3936 and is configured to selectively mesh with a firing drive assembly generally designated as 3961. Rotation of the second drive shaft 3936 causes the closure drive gear 3950 and the firing drive gear 3960 to rotate. In one non-limiting embodiment, the closure 35 drive assembly 3951 comprises a closure driven gear 3952 that is coupled to a first closure pulley 3954 that is rotatably supported on a third drive shaft 3956. The closure cable 3850 is drivingly received on the first closure pulley 3954 such that rotation of the closure driven gear 3952 will drive the closure 40 cable 3850. Likewise, the firing drive assembly 3961 comprises a firing driven gear 3962 that is coupled to a first firing pulley 3964 that is rotatably supported on the third drive shaft 3956. The first and second driving pulleys 3954 and 3964 are independently rotatable on the third drive shaft 3956. The 45 firing cable 3884 is drivingly received on the first firing pulley 3964 such that rotation of the firing driven gear 3962 will drive the firing cable 3884.

Also in various embodiments, the cable drive transmission 3920 further includes a braking assembly 3970. In at least one 50 embodiment, for example, the braking assembly 3970 includes a closure brake 3972 that comprises a spring arm 3973 that is attached to a portion of the transmission housing 3971. The closure brake 3972 has a gear lug 3974 that is sized to engage the teeth of the closure driven gear 3952 as will be 55 discussed in further detail below. The braking assembly 3970 further includes a firing brake 3976 that comprises a spring arm 3977 that is attached to another portion of the transmission housing 3971. The firing brake 3976 has a gear lug 3978 that is sized to engage the teeth of the firing driven gear 3962.

At least one embodiment of the surgical tool **3800** may be used as follows. The tool mounting portion **3900** is operably coupled to the interface **1240** of the robotic system **1000**. The controller or control unit of the robotic system is operated to locate the tissue to be cut and stapled between the open anvil 65 **3824** and the staple cartridge **3834**. When in that initial position, the braking assembly **3970** has locked the closure driven

gear 3952 and the firing driven gear 3962 such that they cannot rotate. That is, as shown in FIG. 84, the gear lug 3974 is in locking engagement with the closure driven gear 3952 and the gear lug 3978 is in locking engagement with the firing

and the gear lug 3978 is in locking engagement with the firing driven gear 3962. Once the surgical end effector 3814 has been properly located, the controller 1001 of the robotic system 1000 will provide a control signal to the shifter motor 3922 (or shifter solenoid) to move the shifter yoke 3940 in the

54

first direction. As the shifter yoke 3940 is moved in the first direction, the closure drive gear 3950 moves the gear lug 3974 out of engagement with the closure driven gear 3952 as it moves into meshing engagement with the closure driven gear

3952. As can be seen in FIG. **83**, when in that position, the gear lug **3978** remains in locking engagement with the firing driven gear **3962** to prevent actuation of the firing system. Thereafter, the robotic controller **1001** provides a first rotary

actuation motion to the drive pulley 3930 through the interface between the driven element 1304 and the corresponding components of the tool holder 1240. As the drive pulley 3930 is rotated in the first direction, the closure cable 3850 is

rotated to drive the preclamping collar **3840** into closing engagement with the cam surface **3825** of the anvil **3824** to move it to the closed position thereby clamping the target tissue between the anvil **3824** and the staple cartridge **3834**.

See FIG. 79. Once the anvil 3824 has been moved to the closed position, the robotic controller 1001 stops the application of the first rotary motion to the drive pulley 3930. Thereafter, the robotic controller 1001 may commence the firing process by sending another control signal to the shifter

motor **3922** (or shifter solenoid) to cause the shifter yoke to move in the second direction "SD" as shown in FIG. **94**. As the shifter yoke **3940** is moved in the second direction, the firing drive gear **3960** moves the gear lug **3978** out of engage-

ment with the firing driven gear 3962 as it moves into meshing engagement with the firing driven gear 3962. As can be seen in FIG. 85, when in that position, the gear lug 3974 remains in locking engagement with the closure driven gear 3952 to

prevent actuation of the closure system. Thereafter, the robotic controller 1001 is activated to provide the first rotary actuation motion to the drive pulley 3930 through the interface between the driven element 1304 and the corresponding

components of the tool holder 1240. As the drive pulley 3930 is rotated in the first direction, the firing cable 3884 is rotated to drive the dynamic clamping member 3860 in the distal direction "DD" thereby firing the stapes and cutting the tissue clamped in the end effector 3814. Once the robotic system

1000 determines that the dynamic clamping member 3860 has reached its distal most position—either through sensors or through monitoring the amount of rotary input applied to the drive pulley 3930, the controller 1001 may then apply a second rotary 2000 to the drive pulley 3930 to rotate the

closure cable 3850 in an opposite direction to cause the dynamic clamping member 3860 to be retracted in the proximal direction "PD". Once the dynamic clamping member has been retracted to the starting position, the application of the second rotary motion to the drive pulley 3930 is discontinued.

Thereafter, the shifter motor 3922 (or shifter solenoid) is powered to move the shifter yoke 3940 to the closure position (FIG. 83). Once the closure drive gear 3950 is in meshing engagement with the closure driven gear 3952, the robotic controller 1001 may once again apply the second rotary motion to the drive pulley 3930. Rotation of the drive pulley

3930 in the second direction causes the closure cable 3850 to retract the preclamping collar 3840 out of engagement with the cam surface 3825 of the anvil 3824 to permit the anvil

3824 to move to an open position (by a spring or other means) to release the stapled tissue from the surgical end effector 3814

FIG. 89 illustrates a surgical tool 4000 that employs a gear driven firing bar 4092 as shown in FIGS. 90-92. This embodiment includes an elongated shaft assembly 4008 that extends from a tool mounting portion 4100. The tool mounting portion 4100 includes a tool mounting plate 4102 that operable supports a transmission arrangement 4103 thereon. The elongated shaft assembly 4008 includes a rotatable proximal clo- 10 sure tube 4010 that is rotatably journaled on a proximal spine member 4020 that is rigidly coupled to the tool mounting plate 4102. The proximal spine member 4020 has a distal end that is coupled to an elongated channel portion 4022 of a surgical end effector 4012. The surgical effector 4012 may be 15 substantially similar to surgical end effector 3412 described above. In addition, the anvil 4024 of the surgical end effector 4012 may be opened and closed by a distal closure tube 4030 that operably interfaces with the proximal closure tube 4010. Distal closure tube 4030 is identical to distal closure tube 20 3430 described above. Similarly, proximal closure tube 4010 is identical to proximal closure tube segment 3410 described

Anvil 4024 is opened and closed by rotating the proximal closure tube 4010 in manner described above with respect to 25 distal closure tube 3410. In at least one embodiment, the transmission arrangement comprises a closure transmission, generally designated as 4011. As will be further discussed below, the closure transmission 4011 is configured to receive a corresponding first rotary motion from the robotic system 30 1000 and convert that first rotary motion to a primary rotary motion for rotating the rotatable proximal closure tube 4010 about the longitudinal tool axis LT-LT. As can be seen in FIG. 92, a proximal end 4060 of the proximal closure tube 4010 is rotatably supported within a cradle arrangement 4104 that is 35 attached to a tool mounting plate 4102 of the tool mounting portion 4100. A rotation gear 4062 is formed on or attached to the proximal end 4060 of the closure tube segment 4010 for meshing engagement with a rotation drive assembly 4070 that is operably supported on the tool mounting plate 4102. In at 40 least one embodiment, a rotation drive gear 4072 is coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 4102 when the tool mounting portion 4100 is coupled to the tool holder 1270. See FIGS. 22 and 92. The rotation drive assembly 4070 fur- 45 ther comprises a rotary driven gear 4074 that is rotatably supported on the tool mounting plate 4102 in meshing engagement with the rotation gear 4062 and the rotation drive gear 4072. Application of a first rotary control motion from the robotic system 1000 through the tool holder 1270 and the 50 adapter 1240 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 4072 by virtue of being operably coupled thereto. Rotation of the rotation drive gear 4072 ultimately results in the rotation of the closure tube segment 4010 to open and close the anvil 55 **4024** as described above.

As indicated above, the end effector **4012** employs a cutting element **3860** as shown in FIGS. **90** and **91**. In at least one non-limiting embodiment, the transmission arrangement **4103** further comprises a knife drive transmission that 60 includes a knife drive assembly **4080**. FIG. **92** illustrates one form of knife drive assembly **4080** for axially advancing the knife bar **4092** that is attached to such cutting element using cables as described above with respect to surgical tool **3800**. In particular, the knife bar **4092** replaces the firing cable **3884** 65 employed in an embodiment of surgical tool **3800**. One form of the knife drive assembly **4080** comprises a rotary drive gear

56

4082 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 4102 when the tool mounting portion 4100 is coupled to the tool holder 1270. See FIGS. 22 and 92. The knife drive assembly 4080 further comprises a first rotary driven gear assembly 4084 that is rotatably supported on the tool mounting plate 4102. The first rotary driven gear assembly 4084 is in meshing engagement with a third rotary driven gear assembly 4086 that is rotatably supported on the tool mounting plate 4102 and which is in meshing engagement with a fourth rotary driven gear assembly 4088 that is in meshing engagement with a threaded portion 4094 of drive shaft assembly 4090 that is coupled to the knife bar 4092. Rotation of the rotary drive gear 4082 in a second rotary direction will result in the axial advancement of the drive shaft assembly 4090 and knife bar 4092 in the distal direction "DD". Conversely, rotation of the rotary drive gear 4082 in a secondary rotary direction (opposite to the second rotary direction) will cause the drive shaft assembly 4090 and the knife bar 4092 to move in the proximal direction. Movement of the firing bar 4092 in the proximal direction "PD" will drive the cutting element 3860 in the distal direction "DD". Conversely, movement of the firing bar 4092 in the distal direction "DD" will result in the movement of the cutting element 3860 in the proximal direction "PD".

FIGS. 93-99 illustrate yet another surgical tool 5000 that may be effectively employed in connection with a robotic system 1000. In various forms, the surgical tool 5000 includes a surgical end effector 5012 in the form of a surgical stapling instrument that includes an elongated channel 5020 and a pivotally translatable clamping member, such as an anvil 5070, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 5012. As can be seen in FIG. 95, the elongated channel 5020 may be substantially U-shaped in cross-section and be fabricated from, for example, titanium, 203 stainless steel, 304 stainless steel, 416 stainless steel, 17-4 stainless steel, 17-7 stainless steel, 6061 or 7075 aluminum, chromium steel, ceramic, etc. A substantially U-shaped metal channel pan 5022 may be supported in the bottom of the elongated channel **5020** as shown.

Various embodiments include an actuation member in the form of a sled assembly 5030 that is operably supported within the surgical end effector 5012 and axially movable therein between a starting position and an ending position in response to control motions applied thereto. In some forms, the metal channel pan 5022 has a centrally-disposed slot 5024 therein to movably accommodate a base portion 5032 of the sled assembly 5030. The base portion 5032 includes a foot portion 5034 that is sized to be slidably received in a slot 5021 in the elongated channel 5020. See FIG. 95. As can be seen in FIGS. 94, 95, 98, and 99, the base portion 5032 of sled assembly 5030 includes an axially extending threaded bore 5036 that is configured to be threadedly received on a threaded drive shaft 5130 as will be discussed in further detail below. In addition, the sled assembly 5030 includes an upstanding support portion 5038 that supports a tissue cutting blade or tissue cutting instrument 5040. The upstanding support portion 5038 terminates in a top portion 5042 that has a pair of laterally extending retaining fins 5044 protruding therefrom. As shown in FIG. 95, the fins 5044 are positioned to be received within corresponding slots 5072 in anvil 5070. The fins 5044 and the foot 5034 serve to retain the anvil 5070 in a desired spaced closed position as the sled assembly 5030 is driven distally through the tissue clamped within the surgical end effector 5014. As can also be seen in FIGS. 97 and 99, the sled assembly 5030 further includes a reciprocatably

or sequentially activatable drive assembly 5050 for driving staple pushers toward the closed anvil 5070.

More specifically and with reference to FIGS. 95 and 96, the elongated channel 5020 is configured to operably support a surgical staple cartridge 5080 therein. In at least one form, the surgical staple cartridge 5080 comprises a body portion 5082 that may be fabricated from, for example, Vectra, Nylon (6/6 or 6/12) and include a centrally disposed slot 5084 for accommodating the upstanding support portion 5038 of the sled assembly 5030. See FIG. 95. These materials could also be filled with glass, carbon, or mineral fill of 10%-40%. The surgical staple cartridge 5080 further includes a plurality of cavities 5086 for movably supporting lines or rows of staplesupporting pushers 5088 therein. The cavities 5086 may be arranged in spaced longitudinally extending lines or rows 5090, 5092, 5094, 5096. For example, the rows 5090 may be referred to herein as first outboard rows. The rows 5092 may be referred to herein as first inboard rows. The rows 5094 may be referred to as second inboard rows and the rows 5096 may 20 be referred to as second outboard rows. The first inboard row 5090 and the first outboard row 5092 are located on a first lateral side of the longitudinal slot 5084 and the second inboard row 5094 and the second outboard row 5096 are located on a second lateral side of the longitudinal slot **5084**. 25 The first staple pushers 5088 in the first inboard row 5092 are staggered in relationship to the first staple pushers 5088 in the first outboard row 5090. Similarly, the second staple pushers 5088 in the second outboard row 5096 are staggered in relationship to the second pushers 5088 in the second inboard row 30 **5094**. Each pusher **5088** operably supports a surgical staple 5098 thereon.

In various embodiments, the sequentially-activatable or reciprocatably-activatable drive assembly 5050 includes a pair of outboard drivers 5052 and a pair of inboard drivers 35 5054 that are each attached to a common shaft 5056 that is rotatably mounted within the base 5032 of the sled assembly 5030. The outboard drivers 5052 are oriented to sequentially or reciprocatingly engage a corresponding plurality of outboard activation cavities 5026 provided in the channel pan 40 5022. Likewise, the inboard drivers 5054 are oriented to sequentially or reciprocatingly engage a corresponding plurality of inboard activation cavities 5028 provided in the channel pan 5022. The inboard activation cavities 5028 are arranged in a staggered relationship relative to the adjacent 45 outboard activation cavities 5026. See FIG. 96. As can also be seen in FIGS. 96 and 98, in at least one embodiment, the sled assembly 5030 further includes distal wedge segments 5060 and intermediate wedge segments 5062 located on each side of the bore 5036 to engage the pushers 5088 as the sled 50 assembly 5030 is driven distally in the distal direction "DD". As indicated above, the sled assembly 5030 is threadedly received on a threaded portion 5132 of a drive shaft 5130 that is rotatably supported within the end effector 5012. In various embodiments, for example, the drive shaft 5130 has a distal 55 end 5134 that is supported in a distal bearing 5136 mounted in the surgical end effector 5012. See FIGS. 95 and 96.

In various embodiments, the surgical end effector 5012 is coupled to a tool mounting portion 5200 by an elongated shaft assembly 5108. In at least one embodiment, the tool mounting portion 5200 operably supports a transmission arrangement generally designated as 5204 that is configured to receive rotary output motions from the robotic system. The elongated shaft assembly 5108 includes an outer closure tube 5110 that is rotatable and axially movable on a spine member 65 5120 that is rigidly coupled to a tool mounting plate 5201 of the tool mounting portion 5200. The spine member 5120 also

58

has a distal end 5122 that is coupled to the elongated channel portion 5020 of the surgical end effector 5012.

In use, it may be desirable to rotate the surgical end effector 5012 about a longitudinal tool axis LT-LT defined by the elongated shaft assembly 5008. In various embodiments, the outer closure tube 5110 has a proximal end 5112 that is rotatably supported on the tool mounting plate 5201 of the tool drive portion 5200 by a forward support cradle 5203. The proximal end 5112 of the outer closure tube 5110 is configured to operably interface with a rotation transmission portion 5206 of the transmission arrangement 5204. In various embodiments, the proximal end 5112 of the outer closure tube 5110 is also supported on a closure sled 5140 that is also movably supported on the tool mounting plate 5201. A closure tube gear segment 5114 is formed on the proximal end 5112 of the outer closure tube 5110 for meshing engagement with a rotation drive assembly 5150 of the rotation transmission 5206. As can be seen in FIG. 93, the rotation drive assembly 5150, in at least one embodiment, comprises a rotation drive gear 5152 that is coupled to a corresponding first one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 5201 when the tool drive portion 5200 is coupled to the tool holder 1270. The rotation drive assembly 5150 further comprises a rotary driven gear 5154 that is rotatably supported on the tool mounting plate 5201 in meshing engagement with the closure tube gear segment 5114 and the rotation drive gear 5152. Application of a first rotary control motion from the robotic system 1000 through the tool holder 1270 and the adapter 1240 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 5152. Rotation of the rotation drive gear 5152 ultimately results in the rotation of the elongated shaft assembly 5108 (and the end effector 5012) about the longitudinal tool axis LT-LT (represented by arrow "R" in FIG. 93).

Closure of the anvil 5070 relative to the surgical staple cartridge 5080 is accomplished by axially moving the outer closure tube 5110 in the distal direction "DD". Such axial movement of the outer closure tube 5110 may be accomplished by a closure transmission portion 5144 of the transmission arrangement 5204. As indicated above, in various embodiments, the proximal end 5112 of the outer closure tube 5110 is supported by the closure sled 5140 which enables the proximal end 5112 to rotate relative thereto, yet travel axially with the closure sled 5140. In particular, as can be seen in FIG. 93, the closure sled 5140 has an upstanding tab 5141 that extends into a radial groove 5115 in the proximal end portion 5112 of the outer closure tube 5110. In addition, as was described above, the closure sled 5140 is slidably mounted to the tool mounting plate 5201. In various embodiments, the closure sled 5140 has an upstanding portion 5142 that has a closure rack gear 5143 formed thereon. The closure rack gear 5143 is configured for driving engagement with the closure transmission 5144.

In various forms, the closure transmission 5144 includes a closure spur gear 5145 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 5201. Thus, application of a second rotary control motion from the robotic system 1000 through the tool holder 1270 and the adapter 1240 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 5145 when the interface 1230 is coupled to the tool mounting portion 5200. The closure transmission 5144 further includes a driven closure gear set 5146 that is supported in meshing engagement with the closure spur gear 5145 and the closure rack gear 5143. Thus, application of a second rotary control motion from the robotic

system 1000 through the tool holder 1270 and the adapter 1240 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 5145 and ultimately drive the closure sled 5140 and the outer closure tube 5110 axially. The axial direction in which the closure tube **5110** moves ultimately depends upon the direction in which the second driven element 1304 is rotated. For example, in response to one rotary closure motion received from the robotic system 1000, the closure sled 5140 will be driven in the distal direction "DD" and ultimately the outer closure 10 tube 5110 will be driven in the distal direction as well. The outer closure tube 5110 has an opening 5117 in the distal end 5116 that is configured for engagement with a tab 5071 on the anvil 5070 in the manners described above. As the outer closure tube 5110 is driven distally, the proximal end 5116 of 15 the closure tube 5110 will contact the anvil 5070 and pivot it closed. Upon application of an "opening" rotary motion from the robotic system 1000, the closure sled 5140 and outer closure tube 5110 will be driven in the proximal direction "PD" and pivot the anvil 5070 to the open position in the 20 manners described above.

In at least one embodiment, the drive shaft 5130 has a proximal end 5137 that has a proximal shaft gear 5138 attached thereto. The proximal shaft gear 5138 is supported in meshing engagement with a distal drive gear 5162 attached to 25 a rotary drive bar 5160 that is rotatably supported with spine member 5120. Rotation of the rotary drive bar 5160 and ultimately rotary drive shaft 5130 is controlled by a rotary knife transmission 5207 which comprises a portion of the transmission arrangement 5204 supported on the tool mount- 30 ing plate 5210. In various embodiments, the rotary knife transmission 5207 comprises a rotary knife drive system 5170 that is operably supported on the tool mounting plate 5201. In various embodiments, the knife drive system 5170 includes a rotary drive gear 5172 that is coupled to a corresponding third 35 one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 5201 when the tool drive portion 5200 is coupled to the tool holder 1270. The knife drive system 5170 further comprises a first rotary driven gear 5174 that is rotatably supported on the tool mounting plate 5201 in mesh- 40 ing engagement with a second rotary driven gear 5176 and the rotary drive gear 5172. The second rotary driven gear 5176 is coupled to a proximal end portion 5164 of the rotary drive bar 5160.

Rotation of the rotary drive gear 5172 in a first rotary 45 direction will result in the rotation of the rotary drive bar 5160 and rotary drive shaft 5130 in a first direction. Conversely, rotation of the rotary drive gear 5172 in a second rotary direction (opposite to the first rotary direction) will cause the rotary drive bar 5160 and rotary drive shaft 5130 to rotate in 50 a second direction. 2400. Thus, rotation of the drive shaft 2440 results in rotation of the drive sleeve 2400.

One method of operating the surgical tool 5000 will now be described. The tool drive 5200 is operably coupled to the interface 1240 of the robotic system 1000. The controller 55 1001 of the robotic system 1000 is operated to locate the tissue to be cut and stapled between the open anvil 5070 and the surgical staple cartridge 5080. Once the surgical end effector 5012 has been positioned by the robot system 1000 such that the target tissue is located between the anvil 5070 and the surgical staple cartridge 5080, the controller 1001 of the robotic system 1000 may be activated to apply the second rotary output motion to the second driven element 1304 coupled to the closure spur gear 5145 to drive the closure sled 5140 and the outer closure tube 5110 axially in the distal 65 direction to pivot the anvil 5070 closed in the manner described above. Once the robotic controller 1001 determines

60

that the anvil 5070 has been closed by, for example, sensors in the surgical end effector 5012 and/or the tool drive portion 5200, the robotic controller 1001 system may provide the surgeon with an indication that signifies the closure of the anvil. Such indication may be, for example, in the form of a light and/or audible sound, tactile feedback on the control members, etc. Then the surgeon may initiate the firing process. In alternative embodiments, however, the robotic controller 1001 may automatically commence the firing process.

To commence the firing process, the robotic controller applies a third rotary output motion to the third driven disc or element 1304 coupled to the rotary drive gear 5172. Rotation of the rotary drive gear 5172 results in the rotation of the rotary drive bar 5160 and rotary drive shaft 5130 in the manner described above. Firing and formation of the surgical staples 5098 can be best understood from reference to FIGS. 94, 96, and 97. As the sled assembly 5030 is driven in the distal direction "DD" through the surgical staple cartridge 5080, the distal wedge segments 5060 first contact the staple pushers 5088 and start to move them toward the closed anvil 5070. As the sled assembly 5030 continues to move distally, the outboard drivers 5052 will drop into the corresponding activation cavity 5026 in the channel pan 5022. The opposite end of each outboard driver 5052 will then contact the corresponding outboard pusher 5088 that has moved up the distal and intermediate wedge segments 5060, 5062. Further distal movement of the sled assembly 5030 causes the outboard drivers 5052 to rotate and drive the corresponding pushers 5088 toward the anvil 5070 to cause the staples 5098 supported thereon to be formed as they are driven into the anvil 5070. It will be understood that as the sled assembly 5030 moves distally, the knife blade 5040 cuts through the tissue that is clamped between the anvil and the staple cartridge. Because the inboard drivers 5054 and outboard drivers 5052 are attached to the same shaft 5056 and the inboard drivers 5054 are radially offset from the outboard drivers 5052 on the shaft 5056, as the outboard drivers 5052 are driving their corresponding pushers 5088 toward the anvil 5070, the inboard drivers 5054 drop into their next corresponding activation cavity 5028 to cause them to rotatably or reciprocatingly drive the corresponding inboard pushers 5088 towards the closed anvil 5070 in the same manner. Thus, the laterally corresponding outboard staples 5098 on each side of the centrally disposed slot 5084 are simultaneously formed together and the laterally corresponding inboard staples 5098 on each side of the slot 5084 are simultaneously formed together as the sled assembly 5030 is driven distally. Once the robotic controller 1001 determines that the sled assembly 5030 has reached its distal most position—either through sensors or through monitoring the amount of rotary input applied to the drive shaft 5130 and/or the rotary drive bar 5160, the controller 1001 may then apply a third rotary output motion to the drive shaft 5130 to rotate the drive shaft 5130 in an opposite direction to retract the sled assembly 5030 back to its starting position. Once the sled assembly 5030 has been retracted to the starting position (as signaled by sensors in the end effector 5012 and/or the tool drive portion 5200), the application of the second rotary motion to the drive shaft 5130 is discontinued. Thereafter, the surgeon may manually activate the anvil opening process or it may be automatically commenced by the robotic controller 1001. To open the anvil 5070, the second rotary output motion is applied to the closure spur gear 5145 to drive the closure sled 5140 and the outer closure tube 5110 axially in the proximal direction. As the closure tube 5110 moves proximally, the opening 5117 in the distal end 5116 of the closure tube 5110 contacts the tab 5071 on the anvil 5070 to pivot the anvil 5070 to the open

position. A spring may also be employed to bias the anvil 5070 to the open position when the closure tube 5116 has been returned to the starting position. Again, sensors in the surgical end effector 5012 and/or the tool mounting portion **5200** may provide the robotic controller **1001** with a signal 5 indicating that the anvil 5070 is now open. Thereafter, the surgical end effector 5012 may be withdrawn from the surgical site.

FIGS. 100-105 diagrammatically depict the sequential firing of staples in a surgical tool assembly 5000' that is sub- 10 stantially similar to the surgical tool assembly 5000 described above. In this embodiment, the inboard and outboard drivers 5052', 5054' have a cam-like shape with a cam surface 5053 and an actuator protrusion 5055 as shown in FIGS. 100-106. The drivers 5052', 5054' are journaled on the same shaft 5056' 15 that is rotatably supported by the sled assembly 5030'. In this embodiment, the sled assembly 5030' has distal wedge segments 5060' for engaging the pushers 5088. FIG. 100 illustrates an initial position of two inboard or outboard drivers 5052', 5054' as the sled assembly 5030' is driven in the distal 20 direction "DD". As can be seen in that Figure, the pusher 5088a has advanced up the wedge segment 5060' and has contacted the driver 5052', 5054'. Further travel of the sled assembly 5030' in the distal direction causes the driver 5052', 5054' to pivot in the "P" direction (FIG. 101) until the actuator 25 portion 5055 contacts the end wall 5029a of the activation cavity 5026, 5028 as shown in FIG. 102. Continued advancement of the sled assembly 5030' in the distal direction "DD" causes the driver 5052', 5054' to rotate in the "D" direction as shown in FIG. 103. As the driver 5052', 5054' rotates, the 30 pusher 5088a rides up the cam surface 5053 to the final vertical position shown in FIG. 104. When the pusher 5088a reaches the final vertical position shown in FIGS. 104 and 105, the staple (not shown) supported thereon has been driven

FIGS. 107-112 illustrate a surgical end effector 5312 that may be employed for example, in connection with the tool mounting portion 1300 and shaft 2008 described in detail above. In various forms, the surgical end effector 5312 includes an elongated channel 5322 that is constructed as 40 described above for supporting a surgical staple cartridge 5330 therein. The surgical staple cartridge 5330 comprises a body portion 5332 that includes a centrally disposed slot 5334 for accommodating an upstanding support portion 5386 of a sled assembly 5380. See FIGS. 107-109. The surgical staple 45 cartridge body portion 5332 further includes a plurality of cavities 5336 for movably supporting staple-supporting pushers 5350 therein. The cavities 5336 may be arranged in spaced longitudinally extending rows 5340, 5342, 5344, 5346. The rows 5340, 5342 are located on one lateral side of the longi- 50 tudinal slot 5334 and the rows 5344, 5346 are located on the other side of longitudinal slot 5334. In at least one embodiment, the pushers 5350 are configured to support two surgical staples 5352 thereon. In particular, each pusher 5350 located on one side of the elongated slot 5334 supports one staple 55 5352 in row 5340 and one staple 5352 in row 5342 in a staggered orientation. Likewise, each pusher 5350 located on the other side of the elongated slot 5334 supports one surgical staple 5352 in row 5344 and another surgical staple 5352 in row 5346 in a staggered orientation. Thus, every pusher 5350 60 supports two surgical staples 5352.

As can be further seen in FIGS. 107, 108, the surgical staple cartridge 5330 includes a plurality of rotary drivers 5360. More particularly, the rotary drivers 5360 on one side of the elongated slot 5334 are arranged in a single line 5370 and 65 correspond to the pushers 5350 in lines 5340, 5342. In addition, the rotary drivers 5360 on the other side of the elongated

slot 5334 are arranged in a single line 5372 and correspond to the pushers 5350 in lines 5344, 5346. As can be seen in FIG. 107, each rotary driver 5360 is rotatably supported within the staple cartridge body 5332. More particularly, each rotary driver 5360 is rotatably received on a corresponding driver shaft 5362. Each driver 5360 has an arcuate ramp portion 5364 formed thereon that is configured to engage an arcuate lower surface 5354 formed on each pusher 5350. See FIG. 112. In addition, each driver 5360 has a lower support portion 5366 extend therefrom to slidably support the pusher 5360 on the channel 5322. Each driver 5360 has a downwardly extending actuation rod 5368 that is configured for engagement with a sled assembly 5380.

62

As can be seen in FIG. 109, in at least one embodiment, the sled assembly 5380 includes a base portion 5382 that has a foot portion 5384 that is sized to be slidably received in a slot 5333 in the channel 5322. See FIG. 107. The sled assembly 5380 includes an upstanding support portion 5386 that supports a tissue cutting blade or tissue cutting instrument 5388. The upstanding support portion 5386 terminates in a top portion 5390 that has a pair of laterally extending retaining fins 5392 protruding therefrom. The fins 5392 are positioned to be received within corresponding slots (not shown) in the anvil (not shown). As with the above-described embodiments, the fins 5392 and the foot portion 5384 serve to retain the anvil (not shown) in a desired spaced closed position as the sled assembly 5380 is driven distally through the tissue clamped within the surgical end effector 5312. The upstanding support portion 5386 is configured for attachment to a knife bar 2200 (FIG. 28). The sled assembly 5380 further has a horizontally-extending actuator plate 5394 that is shaped for actuating engagement with each of the actuation rods 5368 on the pushers 5360.

Operation of the surgical end effector 5312 will now be into the staple forming surface of the anvil to form the staple. 35 explained with reference to FIGS. 107 and 108. As the sled assembly 5380 is driven in the distal direction "DD" through the staple cartridge 5330, the actuator plate 5394 sequentially contacts the actuation rods 5368 on the pushers 5360. As the sled assembly 5380 continues to move distally, the actuator plate 5394 sequentially contacts the actuator rods 5368 of the drivers 5360 on each side of the elongated slot 5334. Such action causes the drivers 5360 to rotate from a first unactuated position to an actuated portion wherein the pushers 5350 are driven towards the closed anvil. As the pushers 5350 are driven toward the anvil, the surgical staples 5352 thereon are driven into forming contact with the underside of the anvil. Once the robotic system 1000 determines that the sled assembly 5080 has reached its distal most position through sensors or other means, the control system of the robotic system $1000\,$ may then retract the knife bar and sled assembly 5380 back to the starting position. Thereafter, the robotic control system may then activate the procedure for returning the anvil to the open position to release the stapled tissue.

FIGS. 113-117 depict one form of an automated reloading system embodiment of the present invention, generally designated as 5500. In one form, the automated reloading system 5500 is configured to replace a "spent" surgical end effector component in a manipulatable surgical tool portion of a robotic surgical system with a "new" surgical end effector component. As used herein, the term "surgical end effector component" may comprise, for example, a surgical staple cartridge, a disposable loading unit or other end effector components that, when used, are spent and must be replaced with a new component. Furthermore, the term "spent" means that the end effector component has been activated and is no longer useable for its intended purpose in its present state. For example, in the context of a surgical staple cartridge or dis-

posable loading unit, the term "spent" means that at least some of the unformed staples that were previously supported therein have been "fired" therefrom. As used herein, the term "new" surgical end effector component refers to an end effector component that is in condition for its intended use. In the context of a surgical staple cartridge or disposable loading unit, for example, the term "new" refers to such a component that has unformed staples therein and which is otherwise ready for use.

In various embodiments, the automated reloading system 10 5500 includes a base portion 5502 that may be strategically located within a work envelope 1109 of a robotic arm cart 1100 (FIG. 14) of a robotic system 1000. As used herein, the term "manipulatable surgical tool portion" collectively refers to a surgical tool of the various types disclosed herein and 15 other forms of surgical robotically-actuated tools that are operably attached to, for example, a robotic arm cart 1100 or similar device that is configured to automatically manipulate and actuate the surgical tool. The term "work envelope" as used herein refers to the range of movement of the manipu- 20 latable surgical tool portion of the robotic system. FIG. 14 generally depicts an area that may comprise a work envelope of the robotic arm cart 1100. Those of ordinary skill in the art will understand that the shape and size of the work envelope depicted therein is merely illustrative. The ultimate size, 25 shape and location of a work envelope will ultimately depend upon the construction, range of travel limitations, and location of the manipulatable surgical tool portion. Thus, the term "work envelope" as used herein is intended to cover a variety of different sizes and shapes of work envelopes and should 30 not be limited to the specific size and shape of the sample work envelope depicted in FIG. 14.

As can be seen in FIG. 113, the base portion 5502 includes a new component support section or arrangement 5510 that is configured to operably support at least one new surgical end 35 effector component in a "loading orientation". As used herein, the term "loading orientation" means that the new end effector component is supported in such away so as to permit the corresponding component support portion of the manipulatable surgical tool portion to be brought into loading 40 engagement with (i.e., operably seated or operably attached to) the new end effector component (or the new end effector component to be brought into loading engagement with the corresponding component support portion of the manipulatable surgical tool portion) without human intervention 45 beyond that which may be necessary to actuate the robotic system. As will be further appreciated as the present Detailed Description proceeds, in at least one embodiment, the preparation nurse will load the new component support section before the surgery with the appropriate length and color car- 50 tridges (some surgical staple cartridges may support certain sizes of staples the size of which may be indicated by the color of the cartridge body) required for completing the surgical procedure. However, no direct human interaction is necessary during the surgery to reload the robotic endocutter. In one 55 form, the surgical end effector component comprises a staple cartridge 2034 that is configured to be operably seated within a component support portion (elongated channel) of any of the various other end effector arrangements described above. For explanation purposes, new (unused) cartridges will be 60 designated as "2034a" and spent cartridges will be designated as "2034b". The Figures depict cartridges 2034a, 2034b designed for use with a surgical end effector 2012 that includes a channel 2022 and an anvil 2024, the construction and operation of which were discussed in detail above. Car- 65 tridges 2034a, 2034b are identical to cartridges 2034 described above. In various embodiments, the cartridges

2034a, 2034b are configured to be snappingly retained (i.e., loading engagement) within the channel 2022 of a surgical end effector 2012. As the present Detailed Description proceeds, however, those of ordinary skill in the art will appreciate that the unique and novel features of the automated cartridge reloading system 5500 may be effectively employed in connection with the automated removal and installation of other cartridge arrangements without departing from the spirit and scope of the present invention.

64

In the depicted embodiment, the term "loading orientation" means that the distal tip portion 2035a of the a new surgical staple cartridge 2034a is inserted into a corresponding support cavity 5512 in the new cartridge support section 5510 such that the proximal end portion 2037a of the new surgical staple cartridge 2034a is located in a convenient orientation for enabling the arm cart 1100 to manipulate the surgical end effector 2012 into a position wherein the new cartridge 2034a may be automatically loaded into the channel 2022 of the surgical end effector 2012. In various embodiments, the base 5502 includes at least one sensor 5504 which communicates with the control system 1003 of the robotic controller 1001 to provide the control system 1003 with the location of the base 5502 and/or the reload length and color doe each staged or new cartridge 2034a.

As can also be seen in the Figures, the base 5502 further includes a collection receptacle 5520 that is configured to collect spent cartridges 2034b that have been removed or disengaged from the surgical end effector 2012 that is operably attached to the robotic system 1000. In addition, in one form, the automated reloading system 5500 includes an extraction system 5530 for automatically removing the spent end effector component from the corresponding support portion of the end effector or manipulatable surgical tool portion without specific human intervention beyond that which may be necessary to activate the robotic system. In various embodiments, the extraction system 5530 includes an extraction hook member 5532. In one form, for example, the extraction hook member 5532 is rigidly supported on the base portion 5502. In one embodiment, the extraction hook member has at least one hook 5534 formed thereon that is configured to hookingly engage the distal end 2035 of a spent cartridge 2034b when it is supported in the elongated channel 2022 of the surgical end effector 2012. In various forms, the extraction hook member 5532 is conveniently located within a portion of the collection receptacle 5520 such that when the spent end effector component (cartridge 2034b) is brought into extractive engagement with the extraction hook member 5532, the spent end effector component (cartridge 2034b) is dislodged from the corresponding component support portion (elongated channel 2022), and falls into the collection receptacle 5020. Thus, to use this embodiment, the manipulatable surgical tool portion manipulates the end effector attached thereto to bring the distal end 2035 of the spent cartridge 2034b therein into hooking engagement with the hook 5534 and then moves the end effector in such a way to dislodge the spent cartridge 2034b from the elongated channel 2022.

In other arrangements, the extraction hook member 5532 comprises a rotatable wheel configuration that has a pair of diametrically-opposed hooks 5334 protruding therefrom. See FIGS. 113 and 116. The extraction hook member 5532 is rotatably supported within the collection receptacle 5520 and is coupled to an extraction motor 5540 that is controlled by the controller 1001 of the robotic system. This form of the automated reloading system 5500 may be used as follows. FIG. 115 illustrates the introduction of the surgical end effector 2012 that is operably attached to the manipulatable surgi-

cal tool portion 1200. As can be seen in that Figure, the arm cart 1100 of the robotic system 1000 locates the surgical end effector 2012 in the shown position wherein the hook end 5534 of the extraction member 5532 hookingly engages the distal end 2035 of the spent cartridge 2034b in the surgical 5 end effector 2012. The anvil 2024 of the surgical end effector 2012 is in the open position. After the distal end 2035 of the spent cartridge 2034b is engaged with the hook end 5532, the extraction motor 5540 is actuated to rotate the extraction wheel **5532** to disengage the spent cartridge **2034***b* from the 10 channel 2022. To assist with the disengagement of the spent cartridge 2034b from the channel 2022 (or if the extraction member 5530 is stationary), the robotic system 1000 may move the surgical end effector 2012 in an upward direction (arrow "U" in FIG. 116). As the spent cartridge 2034b is 15 dislodged from the channel 2022, the spent cartridge 2034b falls into the collection receptacle 5520. Once the spent cartridge 2034b has been removed from the surgical end effector 2012, the robotic system 1000 moves the surgical end effector 2012 to the position shown in FIG. 117.

In various embodiments, a sensor arrangement 5533 is located adjacent to the extraction member 5532 that is in communication with the controller 1001 of the robotic system 1000. The sensor arrangement 5533 may comprise a sensor that is configured to sense the presence of the surgical end 25 effector 2012 and, more particularly the tip 2035b of the spent surgical staple cartridge **2034***b* thereof as the distal tip portion 2035b is brought into engagement with the extraction member 5532. In some embodiments, the sensor arrangement 5533 may comprise, for example, a light curtain arrangement. 30 However, other forms of proximity sensors may be employed. In such arrangement, when the surgical end effector 2012 with the spent surgical staple cartridge 2034b is brought into extractive engagement with the extraction member 5532, the sensor senses the distal tip 2035b of the surgical staple cartridge 2034b (e.g., the light curtain is broken). When the extraction member 5532 spins and pops the surgical staple cartridge 2034b loose and it falls into the collection receptacle 5520, the light curtain is again unbroken. Because the surgical end effector 2012 was not moved during this procedure, the 40 robotic controller 1001 is assured that the spent surgical staple cartridge 2034b has been removed therefrom. Other sensor arrangements may also be successfully employed to provide the robotic controller 1001 with an indication that the spent surgical staple cartridge 2034b has been removed from 45 the surgical end effector 2012.

As can be seen in FIG. 117, the surgical end effector 2012 is positioned to grasp a new surgical staple cartridge 2034a between the channel 2022 and the anvil 2024. More specifically, as shown in FIGS. 114 and 117, each cavity 5512 has a 50 corresponding upstanding pressure pad 5514 associated with it. The surgical end effector 2012 is located such that the pressure pad 5514 is located between the new cartridge 2034a and the anvil 2024. Once in that position, the robotic system 1000 closes the anvil 2024 onto the pressure pad 5514 which 55 serves to push the new cartridge 2034a into snapping engagement with the channel 2022 of the surgical end effector 2012. Once the new cartridge 2034a has been snapped into position within the elongated channel 2022, the robotic system 1000 then withdraws the surgical end effector 2012 from the auto- 60 mated cartridge reloading system 5500 for use in connection with performing another surgical procedure.

FIGS. 118-122 depict another automated reloading system 5600 that may be used to remove a spent disposable loading unit 3612 from a manipulatable surgical tool arrangement 65 3600 (FIGS. 65-78) that is operably attached to an arm cart 1100 or other portion of a robotic system 1000 and reload a

66

new disposable loading unit 3612 therein. As can be seen in FIGS. 118 and 119, one form of the automated reloading system 5600 includes a housing 5610 that has a movable support assembly in the form of a rotary carrousel top plate 5620 supported thereon which cooperates with the housing 5610 to form a hollow enclosed area 5612. The automated reloading system 5600 is configured to be operably supported within the work envelop of the manipulatable surgical tool portion of a robotic system as was described above. In various embodiments, the rotary carrousel plate 5620 has a plurality of holes 5622 for supporting a plurality of orientation tubes 5660 therein. As can be seen in FIGS. 119 and 120, the rotary carrousel plate 5620 is affixed to a spindle shaft 5624. The spindle shaft 5624 is centrally disposed within the enclosed area 5612 and has a spindle gear 5626 attached thereto. The spindle gear 5626 is in meshing engagement with a carrousel drive gear 5628 that is coupled to a carrousel drive motor 5630 that is in operative communication with the robotic 20 controller 1001 of the robotic system 1000.

Various embodiments of the automated reloading system 5600 may also include a carrousel locking assembly, generally designated as 5640. In various forms, the carrousel locking assembly 5640 includes a cam disc 5642 that is affixed to the spindle shaft 5624. The spindle gear 5626 may be attached to the underside of the cam disc 5642 and the cam disc 5642 may be keyed onto the spindle shaft 5624. In alternative arrangements, the spindle gear 5626 and the cam disc 5642 may be independently non-rotatably affixed to the spindle shaft 5624. As can be seen in FIGS. 119 and 120, a plurality of notches **5644** are spaced around the perimeter of the cam disc 5642. A locking arm 5648 is pivotally mounted within the housing 5610 and is biased into engagement with the perimeter of the cam disc 5642 by a locking spring 5649. As can be seen in FIG. 118, the outer perimeter of the cam disc 5642 is rounded to facilitate rotation of the cam disc 5642 relative to the locking arm 5648. The edges of each notch 5644 are also rounded such that when the cam disc 5642 is rotated, the locking arm 5648 is cammed out of engagement with the notches 5644 by the perimeter of the cam disc 5642.

Various forms of the automated reloading system 5600 are configured to support a portable/replaceable tray assembly 5650 that is configured to support a plurality of disposable loading units 3612 in individual orientation tubes 5660. More specifically and with reference to FIGS. 119 and 120, the replaceable trav assembly 5650 comprises a trav 5652 that has a centrally-disposed locator spindle 5654 protruding from the underside thereof. The locator spindle 5654 is sized to be received within a hollow end 5625 of spindle shaft 5624. The tray 5652 has a plurality of holes 5656 therein that are configured to support an orientation tube 5660 therein. Each orientation tube 5660 is oriented within a corresponding hole 5656 in the replaceable tray assembly 5650 in a desired orientation by a locating fin 5666 on the orientation tube 5660 that is designed to be received within a corresponding locating slot 5658 in the tray assembly 5650. In at least one embodiment, the locating fin 5666 has a substantially V-shaped cross-sectional shape that is sized to fit within a V-shaped locating slot 5658. Such arrangement serves to orient the orientation tube 5660 in a desired starting position while enabling it to rotate within the hole 5656 when a rotary motion is applied thereto. That is, when a rotary motion is applied to the orientation tube 5660 the V-shaped locating fin **5666** will pop out of its corresponding locating slot enabling the tube 5660 to rotate relative to the tray 5652 as will be discussed in further detail below. As can also be seen in FIGS. 118-120, the replaceable tray 5652 may be provided with one

or more handle portions 5653 to facilitate transport of the tray assembly 5652 when loaded with orientation tubes 5660.

As can be seen in FIG. 122, each orientation tube 5660 comprises a body portion 5662 that has a flanged open end **5664**. The body portion **5662** defines a cavity **5668** that is ⁵ sized to receive a portion of a disposable loading unit 3612 therein. To properly orient the disposable loading unit 3612 within the orientation tube 5660, the cavity 5668 has a flat locating surface 5670 formed therein. As can be seen in FIG. 122, the flat locating surface 5670 is configured to facilitate the insertion of the disposable loading unit into the cavity **5668** in a desired or predetermined non-rotatable orientation. In addition, the end 5669 of the cavity 5668 may include a foam or cushion material 5672 that is designed to cushion the distal end of the disposable loading unit 3612 within the cavity 5668. Also, the length of the locating surface may cooperate with a sliding support member 3689 of the axial drive assembly 3680 of the disposable loading unit 3612 to further locate the disposable loading unit **3612** at a desired 20 position within the orientation tube 5660.

The orientation tubes 5660 may be fabricated from Nylon, polycarbonate, polyethylene, liquid crystal polymer, 6061 or 7075 aluminum, titanium, 300 or 400 series stainless steel, coated or painted steel, plated steel, etc. and, when loaded in 25 the replaceable tray 5662 and the locator spindle 5654 is inserted into the hollow end 5625 of spindle shaft 5624, the orientation tubes 5660 extend through corresponding holes 5662 in the carrousel top plate 5620. Each replaceable tray **5662** is equipped with a location sensor **5663** that communi- 30 cates with the control system 1003 of the controller 1001 of the robotic system 1000. The sensor 5663 serves to identify the location of the reload system, and the number, length, color and fired status of each reload housed in the tray. In with the robotic controller 1001 may be employed to sense the type/size/length of disposable loading units that are loaded within the tray 5662.

Various embodiments of the automated reloading system 5600 further include a drive assembly 5680 for applying a 40 rotary motion to the orientation tube 5660 holding the disposable loading unit 3612 to be attached to the shaft 3700 of the surgical tool 3600 (collectively the "manipulatable surgical tool portion") that is operably coupled to the robotic system. The drive assembly 5680 includes a support yoke 45 5682 that is attached to the locking arm 5648. Thus, the support yoke 5682 pivots with the locking arm 5648. The support yoke 5682 rotatably supports a tube idler wheel 5684 and a tube drive wheel 5686 that is driven by a tube motor 5688 attached thereto. Tube motor 5688 communicates with 50 the control system 1003 and is controlled thereby. The tube idler wheel 5684 and tube drive wheel 5686 are fabricated from, for example, natural rubber, sanoprene, isoplast, etc. such that the outer surfaces thereof create sufficient amount of friction to result in the rotation of an orientation tube 5660 in 55 contact therewith upon activation of the tube motor 5688. The idler wheel 5684 and tube drive wheel 5686 are oriented relative to each other to create a cradle area 5687 therebetween for receiving an orientation tube 5060 in driving engagement therein.

In use, one or more of the orientation tubes 5660 loaded in the automated reloading system 5600 are left empty, while the other orientation tubes 5660 may operably support a corresponding new disposable loading unit 3612 therein. As will be discussed in further detail below, the empty orientation 65 tubes 5660 are employed to receive a spent disposable loading unit 3612 therein.

68

The automated reloading system 5600 may be employed as follows after the system 5600 is located within the work envelope of the manipulatable surgical tool portion of a robotic system. If the manipulatable surgical tool portion has a spent disposable loading unit 3612 operably coupled thereto, one of the orientation tubes 5660 that are supported on the replaceable tray 5662 is left empty to receive the spent disposable loading unit 3612 therein. If, however, the manipulatable surgical tool portion does not have a disposable loading unit 3612 operably coupled thereto, each of the orientation tubes 5660 may be provided with a properly oriented new disposable loading unit 3612.

As described hereinabove, the disposable loading unit 3612 employs a rotary "bayonet-type" coupling arrangement for operably coupling the disposable loading unit 3612 to a corresponding portion of the manipulatable surgical tool portion. That is, to attach a disposable loading unit 3612 to the corresponding portion of the manipulatable surgical tool portion (3700—see FIG. 71, 72), a rotary installation motion must be applied to the disposable loading unit 3612 and/or the corresponding portion of the manipulatable surgical tool portion when those components have been moved into loading engagement with each other. Such installation motions are collectively referred to herein as "loading motions". Likewise, to decouple a spent disposable loading unit 3612 from the corresponding portion of the manipulatable surgical tool, a rotary decoupling motion must be applied to the spent disposable loading unit 3612 and/or the corresponding portion of the manipulatable surgical tool portion while simultaneously moving the spent disposable loading unit and the corresponding portion of the manipulatable surgical tool away from each other. Such decoupling motions are collectively referred to herein as "extraction motions".

To commence the loading process, the robotic system 1000 addition, an optical sensor or sensors 5665 that communicate 35 is activated to manipulate the manipulatable surgical tool portion and/or the automated reloading system 5600 to bring the manipulatable surgical tool portion into loading engagement with the new disposable loading unit 3612 that is supported in the orientation tube 5660 that is in driving engagement with the drive assembly 5680. Once the robotic controller 1001 (FIG. 13) of the robotic control system 1000 has located the manipulatable surgical tool portion in loading engagement with the new disposable loading unit 3612, the robotic controller 1001 activates the drive assembly 5680 to apply a rotary loading motion to the orientation tube 5660 in which the new disposable loading unit 3612 is supported and/or applies another rotary loading motion to the corresponding portion of the manipulatable surgical tool portion. Upon application of such rotary loading motions(s), the robotic controller 1001 also causes the corresponding portion of the manipulatable surgical tool portion to be moved towards the new disposable loading unit 3612 into loading engagement therewith. Once the disposable loading unit 3612 is in loading engagement with the corresponding portion of the manipulatable tool portion, the loading motions are discontinued and the manipulatable surgical tool portion may be moved away from the automated reloading system 5600 carrying with it the new disposable loading unit 3612 that has been operably coupled thereto.

To decouple a spent disposable loading unit 3612 from a corresponding manipulatable surgical tool portion, the robotic controller 1001 of the robotic system manipulates the manipulatable surgical tool portion so as to insert the distal end of the spent disposable loading unit 3612 into the empty orientation tube 5660 that remains in driving engagement with the drive assembly 5680. Thereafter, the robotic controller 1001 activates the drive assembly 5680 to apply a rotary

extraction motion to the orientation tube **5660** in which the spent disposable loading unit **3612** is supported and/or applies a rotary extraction motion to the corresponding portion of the manipulatable surgical tool portion. The robotic controller **1001** also causes the manipulatable surgical tool portion to withdraw away from the spent rotary disposable loading unit **3612**. Thereafter the rotary extraction motion(s) are discontinued.

After the spent disposable loading unit 3612 has been removed from the manipulatable surgical tool portion, the 10 robotic controller 1001 may activate the carrousel drive motor 5630 to index the carrousel top plate 5620 to bring another orientation tube 5660 that supports a new disposable loading unit 3612 therein into driving engagement with the drive assembly 5680. Thereafter, the loading process may be 15 repeated to attach the new disposable loading unit 3612 therein to the portion of the manipulatable surgical tool portion. The robotic controller 1001 may record the number of disposable loading units that have been used from a particular replaceable tray **5652**. Once the controller **1001** determines 20 that all of the new disposable loading units 3612 have been used from that tray, the controller 1001 may provide the surgeon with a signal (visual and/or audible) indicating that the tray 5652 supporting all of the spent disposable loading units 3612 must be replaced with a new tray 5652 containing 25 new disposable loading units 3612.

FIGS. 123-128 depict another non-limiting embodiment of a surgical tool 6000 of the present invention that is welladapted for use with a robotic system 1000 that has a tool drive assembly 1010 (FIG. 18) that is operatively coupled to 30 a master controller 1001 that is operable by inputs from an operator (i.e., a surgeon). As can be seen in FIG. 123, the surgical tool 6000 includes a surgical end effector 6012 that comprises an endocutter. In at least one form, the surgical tool 6000 generally includes an elongated shaft assembly 6008 35 that has a proximal closure tube 6040 and a distal closure tube 6042 that are coupled together by an articulation joint 6100. The surgical tool 6000 is operably coupled to the manipulator by a tool mounting portion, generally designated as 6200. The surgical tool 6000 further includes an interface 6030 which 40 may mechanically and electrically couple the tool mounting portion 6200 to the manipulator in the various manners described in detail above.

In at least one embodiment, the surgical tool 6000 includes a surgical end effector 6012 that comprises, among other 45 things, at least one component 6024 that is selectively movable between first and second positions relative to at least one other component 6022 in response to various control motions applied to component 6024 as will be discussed in further detail below to perform a surgical procedure. In various 50 embodiments, component 6022 comprises an elongated channel 6022 configured to operably support a surgical staple cartridge 6034 therein and component 6024 comprises a pivotally translatable clamping member, such as an anvil 6024. Various embodiments of the surgical end effector 6012 are 55 configured to maintain the anvil 6024 and elongated channel 6022 at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 6012. Unless otherwise stated, the end effector 6012 is similar to the surgical end effector 2012 described above and includes a cut- 60 ting instrument (not shown) and a sled (not shown). The anvil 6024 may include a tab 6027 at its proximal end that interacts with a component of the mechanical closure system (described further below) to facilitate the opening of the anvil 6024. The elongated channel 6022 and the anvil 6024 may be 65 made of an electrically conductive material (such as metal) so that they may serve as part of an antenna that communicates

70

with sensor(s) in the end effector, as described above. The surgical staple cartridge 6034 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 6034, as was also described above.

As can be seen in FIG. 123, the surgical end effector 6012 is attached to the tool mounting portion 6200 by the elongated shaft assembly 6008 according to various embodiments. As shown in the illustrated embodiment, the elongated shaft assembly 6008 includes an articulation joint generally designated as 6100 that enables the surgical end effector 6012 to be selectively articulated about a first tool articulation axis AA1-AA1 that is substantially transverse to a longitudinal tool axis LT-LT and a second tool articulation axis AA2-AA2 that is substantially transverse to the longitudinal tool axis LT-LT as well as the first articulation axis AA1-AA1. See FIG. 124. In various embodiments, the elongated shaft assembly 6008 includes a closure tube assembly 6009 that comprises a proximal closure tube 6040 and a distal closure tube 6042 that are pivotably linked by a pivot links 6044 and 6046. The closure tube assembly 6009 is movably supported on a spine assembly generally designated as 6102.

As can be seen in FIG. 125, the proximal closure tube 6040 is pivotally linked to an intermediate closure tube joint 6043 by an upper pivot link 6044U and a lower pivot link 6044L such that the intermediate closure tube joint 6043 is pivotable relative to the proximal closure tube 6040 about a first closure axis CA1-CA1 and a second closure axis CA2-CA2. In various embodiments, the first closure axis CA1-CA1 is substantially parallel to the second closure axis CA2-CA2 and both closure axes CA1-CA1, CA2-CA2 are substantially transverse to the longitudinal tool axis LT-LT. As can be further seen in FIG. 134, the intermediate closure tube joint 6043 is pivotally linked to the distal closure tube 6042 by a left pivot link 6046L and a right pivot link 6046R such that the intermediate closure tube joint 6043 is pivotable relative to the distal closure tube 6042 about a third closure axis CA3-CA3 and a fourth closure axis CA4-CA4. In various embodiments, the third closure axis CA3-CA3 is substantially parallel to the fourth closure axis CA4-CA4 and both closure axes CA3-CA3, CA4-CA4 are substantially transverse to the first and second closure axes CA1-CA1, CA2-CA2 as well as to longitudinal tool axis LT-LT.

The closure tube assembly 6102 in response to actuation motions applied thereto. The distal closure tube 6042 includes an opening 6045 which interfaces with the tab 6027 on the anvil 6024 to facilitate opening of the anvil 6024 as the distal closure tube 6042 is moved axially in the proximal direction "PD". The closure tubes 6040, 6042 may be made of electrically conductive material (such as metal) so that they may serve as part of the antenna, as described above. Components of the spine assembly 6102 may be made of a nonconductive material (such as plastic).

As indicated above, the surgical tool 6000 includes a tool mounting portion 6200 that is configured for operable attachment to the tool mounting assembly 1010 of the robotic system 1000 in the various manners described in detail above. As can be seen in FIG. 127, the tool mounting portion 6200 comprises a tool mounting plate 6202 that operably supports a transmission arrangement 6204 thereon. In various embodiments, the transmission arrangement 6204 includes an articulation transmission 6142 that comprises a portion of an articulation system 6140 for articulating the surgical end effector 6012 about a first tool articulation axis TA1-TA1 and a second tool articulation axis TA2-TA2. The first tool articulation axis TA1-TA1 is substantially transverse to the second tool articu-

lation axis TA2-TA2 and both of the first and second tool articulation axes are substantially transverse to the longitudinal tool axis LT-LT. See FIG. 124.

To facilitate selective articulation of the surgical end effector 6012 about the first and second tool articulation axes 5 TA1-TA1, TA2-TA2, the spine assembly 6102 comprises a proximal spine portion 6110 that is pivotally coupled to a distal spine portion 6120 by pivot pins 6122 for selective pivotal travel about TA1-TA1. Similarly, the distal spine portion 6120 is pivotally attached to the elongated channel 6022 10 of the surgical end effector 6012 by pivot pins 6124 to enable the surgical end effector 6012 to selectively pivot about the second tool axis TA2-TA2 relative to the distal spine portion 6120.

In various embodiments, the articulation system 6140 fur- 15 ther includes a plurality of articulation elements that operably interface with the surgical end effector 6012 and an articulation control arrangement 6160 that is operably supported in the tool mounting member 6200 as will described in further detail below. In at least one embodiment, the articulation 20 elements comprise a first pair of first articulation cables 6144 and 6146. The first articulation cables are located on a first or right side of the longitudinal tool axis. Thus, the first articulation cables are referred to herein as a right upper cable 6144 and a right lower cable 6146. The right upper cable 6144 and 25 the right lower cable 6146 extend through corresponding passages 6147, 6148, respectively along the right side of the proximal spine portion 6110. See FIG. 128. The articulation system 6140 further includes a second pair of second articulation cables 6150, 6152. The second articulation cables are 30 located on a second or left side of the longitudinal tool axis. Thus, the second articulation cables are referred to herein as a left upper articulation cable 6150 and a left articulation cable 6152. The left upper articulation cable 6150 and the left lower articulation cable 6152 extend through passages 6153, 35 6154, respectively in the proximal spine portion 6110.

As can be seen in FIG. 124, the right upper cable 6144 extends around an upper pivot joint 6123 and is attached to a left upper side of the elongated channel 6022 at a left pivot joint 6125. The right lower cable 6146 extends around a lower 40 pivot joint 6126 and is attached to a left lower side of the elongated channel 6022 at left pivot joint 6125. The left upper cable 6150 extends around the upper pivot joint 6123 and is attached to a right upper side of the elongated channel 6022 at a right pivot joint 6127. The left lower cable 6152 extends 45 around the lower pivot joint 6126 and is attached to a right lower side of the elongated channel 6022 at right pivot joint 6127. Thus, to pivot the surgical end effector 6012 about the first tool articulation axis TA1-TA1 to the left (arrow "L"), the right upper cable 6144 and the right lower cable 6146 must be 50 pulled in the proximal direction "PD". To articulate the surgical end effector 6012 to the right (arrow "R") about the first tool articulation axis TA1-TA1, the left upper cable 6150 and the left lower cable 6152 must be pulled in the proximal direction "PD". To articulate the surgical end effector 6012 55 about the second tool articulation axis TA2-TA2, in an upward direction (arrow "U"), the right upper cable 6144 and the left upper cable 6150 must be pulled in the proximal direction "PD". To articulate the surgical end effector 6012 in the downward direction (arrow "DW") about the second tool articulation axis TA2-TA2, the right lower cable 6146 and the left lower cable 6152 must be pulled in the proximal direction

The proximal ends of the articulation cables **6144**, **6146**, **6150**, **6152** are coupled to the articulation control arrange-65 ment **6160** which comprises a ball joint assembly that is a part of the articulation transmission **6142**. More specifically and

includes a ball-shaped member 6162 that is formed on a proximal portion of the proximal spine 6110. Movably supported on the ball-shaped member 6162 is an articulation control ring 6164. As can be further seen in FIG. 128, the proximal ends of the articulation cables 6144, 6146, 6150, 6152 are coupled to the articulation control ring 6164 by corresponding ball joint arrangements 6166. The articulation control ring 6164 is controlled by an articulation drive assembly 6170. As can be most particularly seen in FIG. 128, the proximal ends of the first articulation cables 6144, 6146 are attached to the articulation control ring 6164 at corresponding

72 with reference to FIG. 128, the ball joint assembly 6160

spaced first points 6149, 6151 that are located on plane 6159. Likewise, the proximal ends of the second articulation cables 6150, 6152 are attached to the articulation control ring 6164 at corresponding spaced second points 6153, 6155 that are also located along plane 6159. As the present Detailed Description proceeds, those of ordinary skill in the art will appreciate that such cable attachment configuration on the articulation control ring 6164 facilitates the desired range of articulation motions as the articulation control ring 6164 is manipulated by the articulation drive assembly 6170.

In various forms, the articulation drive assembly 6170 comprises a horizontal articulation assembly generally designated as 6171. In at least one form, the horizontal articulation assembly 6171 comprises a horizontal push cable 6172 that is attached to a horizontal gear arrangement 6180. The articulation drive assembly 6170 further comprises a vertically articulation assembly generally designated as 6173. In at least one form, the vertical articulation assembly 6173 comprises a vertical push cable 6174 that is attached to a vertical gear arrangement 6190. As can be seen in FIGS. 127 and 128, the horizontal push cable 6172 extends through a support plate 6167 that is attached to the proximal spine portion 6110. The distal end of the horizontal push cable 6174 is attached to the articulation control ring 6164 by a corresponding ball/pivot joint 6168. The vertical push cable 6174 extends through the support plate 6167 and the distal end thereof is attached to the articulation control ring 6164 by a corresponding ball/pivot joint 6169.

The horizontal gear arrangement 6180 includes a horizontal driven gear 6182 that is pivotally mounted on a horizontal shaft 6181 that is attached to a proximal portion of the proximal spine portion 6110. The proximal end of the horizontal push cable 6172 is pivotally attached to the horizontal driven gear 6182 such that, as the horizontal driven gear 6172 is rotated about horizontal pivot axis HA, the horizontal push cable 6172 applies a first pivot motion to the articulation control ring 6164. Likewise, the vertical gear arrangement 6190 includes a vertical driven gear 6192 that is pivotally supported on a vertical shaft 6191 attached to the proximal portion of the proximal spine portion 6110 for pivotal travel about a vertical pivot axis VA. The proximal end of the vertical push cable 6174 is pivotally attached to the vertical driven gear 6192 such that as the vertical driven gear 6192 is rotated about vertical pivot axis VA, the vertical push cable 6174 applies a second pivot motion to the articulation control ring 6164.

The horizontal driven gear 6182 and the vertical driven gear 6192 are driven by an articulation gear train 6300 that operably interfaces with an articulation shifter assembly 6320. In at least one form, the articulation shifter assembly comprises an articulation drive gear 6322 that is coupled to a corresponding one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202. See FIG. 22. Thus, application of a rotary input motion from the robotic system 1000 through the tool drive assembly 1010 to the

corresponding driven element 1304 will cause rotation of the articulation drive gear 6322 when the interface 1230 is coupled to the tool holder 1270. An articulation driven gear 6324 is attached to a splined shifter shaft 6330 that is rotatably supported on the tool mounting plate 6202. The articulation 5 driven gear 6324 is in meshing engagement with the articulation drive gear 6322 as shown. Thus, rotation of the articulation drive gear 6322 will result in the rotation of the shaft 6330. In various forms, a shifter driven gear assembly 6340 is movably supported on the splined portion 6332 of the shifter 10 shaft 6330.

In various embodiments, the shifter driven gear assembly 6340 includes a driven shifter gear 6342 that is attached to a shifter plate 6344. The shifter plate 6344 operably interfaces with a shifter solenoid assembly 6350. The shifter solenoid 15 assembly 6350 is coupled to corresponding pins 6352 by conductors 6352. See FIG. 127. Pins 6352 are oriented to electrically communicate with slots 1258 (FIG. 21) on the tool side 1244 of the adaptor 1240. Such arrangement serves to electrically couple the shifter solenoid assembly 6350 to 20 the robotic controller 1001. Thus, activation of the shifter solenoid 6350 will shift the shifter driven gear assembly 6340 on the splined portion 6332 of the shifter shaft 6330 as represented by arrow "S" in FIGS. 136 and 137. Various embodiments of the articulation gear train 6300 further include a 25 horizontal gear assembly 6360 that includes a first horizontal drive gear 6362 that is mounted on a shaft 6361 that is rotatably attached to the tool mounting plate 6202. The first horizontal drive gear 6362 is supported in meshing engagement with a second horizontal drive gear 6364. As can be seen in 30 FIG. 128, the horizontal driven gear 6182 is in meshing engagement with the distal face portion 6365 of the second horizontal driven gear 6364.

Various embodiments of the articulation gear train 6300 further include a vertical gear assembly 6370 that includes a 35 first vertical drive gear 6372 that is mounted on a shaft 6371 that is rotatably supported on the tool mounting plate 6202. The first vertical drive gear 6372 is supported in meshing engagement with a second vertical drive gear 6374 that is concentrically supported with the second horizontal drive 40 gear 6364. The second vertical drive gear 6374 is rotatably supported on the proximal spine portion 6110 for travel therearound. The second horizontal drive gear 6364 is rotatably supported on a portion of said second vertical drive gear 6374 for independent rotatable travel thereon. As can be seen in 45 FIG. 128, the vertical driven gear 6192 is in meshing engagement with the distal face portion 6375 of the second vertical driven gear 6374.

In various forms, the first horizontal drive gear 6362 has a first diameter and the first vertical drive gear 6372 has a second diameter. As can be seen in FIGS. 127 and 128, the shaft 6361 is not on a common axis with shaft 6371. That is, the first horizontal driven gear 6362 and the first vertical driven gear 6372 do not rotate about a common axis. Thus, when the shifter gear 6342 is positioned in a center "locking" 55 position such that the shifter gear 6342 is in meshing engagement with both the first horizontal driven gear 6362 and the first vertical drive gear 6372, the components of the articulation system 6140 are locked in position. Thus, the shiftable shifter gear 6342 and the arrangement of first horizontal and overtical drive gears 6362, 6372 as well as the articulation shifter assembly 6320 collectively may be referred to as an articulation locking system, generally designated as 6380.

In use, the robotic controller 1001 of the robotic system 1000 may control the articulation system 6140 as follows. To 65 articulate the end effector 6012 to the left about the first tool articulation axis TA1-TA1, the robotic controller 1001 acti-

vates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362. Thereafter, the controller 1001 causes a first rotary output motion to be applied to the articulation drive gear 6322 to drive the shifter gear in a first direction to ultimately drive the horizontal driven gear 6182 in another first direction. The horizontal driven gear 6182 is driven to pivot the articulation ring 6164 on the ball-shaped portion 6162 to thereby pull right upper cable 6144 and the right lower cable 6146 in the proximal direction "PD". To articulate the end effector 6012 to the right about the first tool articulation axis TA1-TA1, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362. Thereafter, the controller 1001 causes the first rotary output motion in an opposite direction to be applied to the articulation drive gear 6322 to drive the shifter gear 6342 in a second direction to ultimately drive the horizontal driven gear 6182 in another second direction. Such actions result in the articulation control ring 6164 moving in such a manner as to pull the left upper cable 6150 and the left lower cable 6152 in the proximal direction "PD". In various embodiments the gear ratios and frictional forces generated between the gears of the vertical gear assembly 6370 serve to prevent rotation of the vertical driven gear 6192 as the horizontal gear assembly 6360 is actuated.

To articulate the end effector 6012 in the upper direction about the second tool articulation axis TA2-TA2, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first vertical drive gear 6372. Thereafter, the controller 1001 causes the first rotary output motion to be applied to the articulation drive gear 6322 to drive the shifter gear 6342 in a first direction to ultimately drive the vertical driven gear 6192 in another first direction. The vertical driven gear 6192 is driven to pivot the articulation ring 6164 on the ball-shaped portion 6162 of the proximal spine portion 6110 to thereby pull right upper cable 6144 and the left upper cable 6150 in the proximal direction "PD". To articulate the end effector 6012 in the downward direction about the second tool articulation axis TA2-TA2, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first vertical drive gear 6372. Thereafter, the controller 1001 causes the first rotary output motion to be applied in an opposite direction to the articulation drive gear 6322 to drive the shifter gear 6342 in a second direction to ultimately drive the vertical driven gear 6192 in another second direction. Such actions thereby cause the articulation control ring 6164 to pull the right lower cable 6146 and the left lower cable 6152 in the proximal direction "PD". In various embodiments, the gear ratios and frictional forces generated between the gears of the horizontal gear assembly 6360 serve to prevent rotation of the horizontal driven gear 6182 as the vertical gear assembly 6370 is actu-

In various embodiments, a variety of sensors may communicate with the robotic controller 1001 to determine the articulated position of the end effector 6012. Such sensors may interface with, for example, the articulation joint 6100 or be located within the tool mounting portion 6200. For example, sensors may be employed to detect the position of the articulation control ring 6164 on the ball-shaped portion 6162 of the proximal spine portion 6110. Such feedback from the sensors to the controller 1001 permits the controller 1001 to adjust the amount of rotation and the direction of the rotary output to the articulation drive gear 6322. Further, as indicated above, when the shifter drive gear 6342 is centrally

positioned in meshing engagement with the first horizontal drive gear 6362 and the first vertical drive gear 6372, the end effector 6012 is locked in the articulated position. Thus, after the desired amount of articulation has been attained, the controller 1001 may activate the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362 and the first vertical drive gear 6372. In alternative embodiments, the shifter solenoid assembly 6350 may be spring activated to the central locked position.

In use, it may be desirable to rotate the surgical end effector 6012 about the longitudinal tool axis LT-LT. In at least one embodiment, the transmission arrangement 6204 on the tool mounting portion includes a rotational transmission assembly 6400 that is configured to receive a corresponding rotary 15 output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 6008 (and surgical end effector 6012) about the longitudinal tool axis LT-LT. In various embodiments, for example, 20 a proximal end portion 6041 of the proximal closure tube 6040 is rotatably supported on the tool mounting plate 6202 of the tool mounting portion 6200 by a forward support cradle 6205 and a closure sled 6510 that is also movably supported on the tool mounting plate 6202. In at least one form, the 25 rotational transmission assembly 6400 includes a tube gear segment 6402 that is formed on (or attached to) the proximal end 6041 of the proximal closure tube 6040 for operable engagement by a rotational gear assembly 6410 that is operably supported on the tool mounting plate 6202. As can be 30 seen in FIG. 136, the rotational gear assembly 6410, in at least one embodiment, comprises a rotation drive gear 6412 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202 when the tool mounting portion 6200 is coupled to 35 the tool drive assembly 1010. See FIG. 22. The rotational gear assembly 6410 further comprises a first rotary driven gear 6414 that is rotatably supported on the tool mounting plate 6202 in meshing engagement with the rotation drive gear 6412. The first rotary driven gear 6414 is attached to a drive 40 shaft 6416 that is rotatably supported on the tool mounting plate 6202. A second rotary driven gear 6418 is attached to the drive shaft 6416 and is in meshing engagement with tube gear segment 6402 on the proximal closure tube 6040. Application of a second rotary output motion from the tool drive assembly 45 1010 of the robotic system 1000 to the corresponding driven element 1304 will thereby cause rotation of the rotation drive gear 6412. Rotation of the rotation drive gear 6412 ultimately results in the rotation of the elongated shaft assembly 6008 (and the surgical end effector 6012) about the longitudinal 50 tool axis LT-LT. It will be appreciated that the application of a rotary output motion from the tool drive assembly 1010 in one direction will result in the rotation of the elongated shaft assembly 6008 and surgical end effector 6012 about the longitudinal tool axis LT-LT in a first direction and an application 55 of the rotary output motion in an opposite direction will result in the rotation of the elongated shaft assembly 6008 and surgical end effector 6012 in a second direction that is opposite to the first direction.

In at least one embodiment, the closure of the anvil **2024** 60 relative to the staple cartridge **2034** is accomplished by axially moving a closure portion of the elongated shaft assembly **2008** in the distal direction "DD" on the spine assembly **2049**. As indicated above, in various embodiments, the proximal end portion **6041** of the proximal closure tube **6040** is supported by the closure sled **6510** which comprises a portion of a closure transmission, generally depicted as **6512**. As can be

seen in FIG. 127, the proximal end portion 6041 of the proximal closure tube portion 6040 has a collar 6048 formed thereon. The closure sled 6510 is coupled to the collar 6048 by a yoke 6514 that engages an annular groove 6049 in the collar 6048. Such arrangement serves to enable the collar 6048 to rotate about the longitudinal tool axis LT-LT while still being coupled to the closure transmission 6512. In various embodiments, the closure sled 6510 has an upstanding portion 6516 that has a closure rack gear 6518 formed thereon. The closure rack gear 6518 is configured for driving engagement with a closure gear assembly 6520. See FIG. 127.

In various forms, the closure gear assembly 6520 includes a closure spur gear 6522 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202. See FIG. 22. Thus, application of a third rotary output motion from the tool drive assembly 1010 of the robotic system 1000 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 6522 when the tool mounting portion 6202 is coupled to the tool drive assembly 1010. The closure gear assembly 6520 further includes a closure reduction gear set 6524 that is supported in meshing engagement with the closure spur gear 6522 and the closure rack gear 2106. Thus, application of a third rotary output motion from the tool drive assembly 1010 of the robotic system 1000 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 6522 and the closure transmission 6512 and ultimately drive the closure sled 6510 and the proximal closure tube 6040 axially on the proximal spine portion 6110. The axial direction in which the proximal closure tube 6040 moves ultimately depends upon the direction in which the third driven element 1304 is rotated. For example, in response to one rotary output motion received from the tool drive assembly 1010 of the robotic system 1000, the closure sled 6510 will be driven in the distal direction "DD" and ultimately drive the proximal closure tube 6040 in the distal direction "DD". As the proximal closure tube 6040 is driven distally, the distal closure tube 6042 is also driven distally by virtue of it connection with the proximal closure tube 6040. As the distal closure tube 6042 is driven distally, the end of the closure tube 6042 will engage a portion of the anvil 6024 and cause the anvil 6024 to pivot to a closed position. Upon application of an "opening" out put motion from the tool drive assembly 1010 of the robotic system 1000, the closure sled 6510 and the proximal closure tube 6040 will be driven in the proximal direction "PD" on the proximal spine portion 6110. As the proximal closure tube 6040 is driven in the proximal direction "PD", the distal closure tube 6042 will also be driven in the proximal direction "PD". As the distal closure tube 6042 is driven in the proximal direction "PD", the opening 6045 therein interacts with the tab 6027 on the anvil 6024 to facilitate the opening thereof. In various embodiments, a spring (not shown) may be employed to bias the anvil 6024 to the open position when the distal closure tube 6042 has been moved to its starting position. In various embodiments, the various gears of the closure gear assembly 6520 are sized to generate the necessary closure forces needed to satisfactorily close the anvil 6024 onto the tissue to be cut and stapled by the surgical end effector 6012. For example, the gears of the closure transmission 6520 may be sized to generate approximately 70-120 pounds of closure forces.

In various embodiments, the cutting instrument is driven through the surgical end effector 6012 by a knife bar 6530. See FIG. 127. In at least one form, the knife bar 6530 is fabricated with a joint arrangement (not shown) and/or is fabricated from material that can accommodate the articula-

tion of the surgical end effector 6102 about the first and second tool articulation axes while remaining sufficiently rigid so as to push the cutting instrument through tissue clamped in the surgical end effector 6012. The knife bar 6530 extends through a hollow passage 6532 in the proximal spine 5 portion 6110.

In various embodiments, a proximal end 6534 of the knife bar 6530 is rotatably affixed to a knife rack gear 6540 such that the knife bar 6530 is free to rotate relative to the knife rack gear 6540. The distal end of the knife bar 6530 is 10 attached to the cutting instrument in the various manners described above. As can be seen in FIG. 127, the knife rack gear 6540 is slidably supported within a rack housing 6542 that is attached to the tool mounting plate 6202 such that the knife rack gear 6540 is retained in meshing engagement with 15 a knife drive transmission portion 6550 of the transmission arrangement 6204. In various embodiments, the knife drive transmission portion 6550 comprises a knife gear assembly 6560. More specifically and with reference to FIG. 127, in at least one embodiment, the knife gear assembly 6560 includes 20 a knife spur gear 6562 that is coupled to a corresponding fourth one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202. See FIG. 22. Thus, application of another rotary output motion from the robotic system 1000 through the tool drive assembly 1010 to the 25 corresponding fourth driven element 1304 will cause rotation of the knife spur gear 6562. The knife gear assembly 6560 further includes a knife gear reduction set 6564 that includes a first knife driven gear 6566 and a second knife drive gear **6568**. The knife gear reduction set **6564** is rotatably mounted 30 to the tool mounting plate 6202 such that the firs knife driven gear 6566 is in meshing engagement with the knife spur gear 6562. Likewise, the second knife drive gear 6568 is in meshing engagement with a third knife drive gear assembly 6570. As shown in FIG. 127, the second knife driven gear 6568 is in 35 meshing engagement with a fourth knife driven gear 6572 of the third knife drive gear assembly 6570. The fourth knife driven gear 6572 is in meshing engagement with a fifth knife driven gear assembly 6574 that is in meshing engagement with the knife rack gear 6540. In various embodiments, the 40 gears of the knife gear assembly 6560 are sized to generate the forces needed to drive the cutting instrument through the tissue clamped in the surgical end effector 6012 and actuate the staples therein. For example, the gears of the knife gear assembly 6560 may be sized to generate approximately 40 to 45 100 pounds of driving force. It will be appreciated that the application of a rotary output motion from the tool drive assembly 1010 in one direction will result in the axial movement of the cutting instrument in a distal direction and application of the rotary output motion in an opposite direction will 50 result in the axial travel of the cutting instrument in a proximal direction.

As can be appreciated from the foregoing description, the surgical tool 6000 represents a vast improvement over prior robotic tool arrangements. The unique and novel transmission arrangement employed by the surgical tool 6000 enables the tool to be operably coupled to a tool holder portion 1010 of a robotic system that only has four rotary output bodies, yet obtain the rotary output motions therefrom to: (i) articulate the end effector about two different articulation axes that are substantially transverse to each other as well as the longitudinal tool axis; (ii) rotate the end effector 6012 about the longitudinal tool axis; (iii) close the anvil 6024 relative to the surgical staple cartridge 6034 to varying degrees to enable the end effector 6012 to be used to manipulate tissue and then 65 clamp it into position for cutting and stapling; and (iv) firing the cutting instrument to cut through the tissue clamped

within the end effector 6012. The unique and novel shifter arrangements of various embodiments of the present invention described above enable two different articulation actions to be powered from a single rotatable body portion of the robotic system.

78

The various embodiments of the present invention have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the inventive surgical instrument disclosed herein need not be a cutting-type surgical instrument, but rather could be used in any type of surgical instrument including remote sensor transponders. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. In addition, the present invention may be in laparoscopic instruments, for example. The present invention also has application in conventional endoscopic and open surgical instrumentation as well as robotic-assisted surgery.

FIG. 129 depicts use of various aspects of certain embodiments of the present invention in connection with a surgical tool 7000 that has an ultrasonically powered end effector 7012. The end effector 7012 is operably attached to a tool mounting portion 7100 by an elongated shaft assembly 7008. The tool mounting portion 7100 may be substantially similar to the various tool mounting portions described hereinabove. In one embodiment, the end effector 7012 includes an ultrasonically powered jaw portion 7014 that is powered by alternating current or direct current in a known manner. Such ultrasonically-powered devices are disclosed, for example, in U.S. Pat. No. 6,783,524, entitled ROBOTIC SURGICAL TOOL WITH ULTRASOUND CAUTERIZING AND CUT-TING INSTRUMENT, which issued on Aug. 31, 2004, the entire disclosure of which is herein incorporated by reference. In the illustrated embodiment, a separate power cord 7020 is shown. It will be understood, however, that the power may be supplied thereto from the robotic controller 1001 through the tool mounting portion 7100. The surgical end effector 7012 further includes a movable jaw 7016 that may be used to clamp tissue onto the ultrasonic jaw portion 7014. The movable jaw portion 7016 may be selectively actuated by the robotic controller 1001 through the tool mounting portion 7100 in anyone of the various manners herein described.

FIG. 130 illustrates use of various aspects of certain embodiments of the present invention in connection with a surgical tool 8000 that has an end effector 8012 that comprises a linear stapling device. The end effector 8012 is operably attached to a tool mounting portion 8100 by an elongated shaft assembly 3700 of the type and construction describe above. However, the end effector 8012 may be attached to the tool mounting portion 8100 by a variety of other elongated shaft assemblies described herein. In one embodiment, the tool mounting portion 8100 may be substantially similar to tool mounting portion 3750. However, various other tool mounting portions and their respective transmission arrangements describe in detail herein may also be employed. Such linear stapling head portions are also disclosed, for example, in U.S. Pat. No. 7,673,781, entitled SURGICAL STAPLING DEVICE WITH STAPLE DRIVER THAT SUPPORTS MULTIPLE WIRE DIAMETER STAPLES, which issued on Mar. 9, 2010, the entire disclosure of which is herein incorporated by reference.

Various sensor embodiments described in U.S. Patent Publication No. 2011/0062212 A1, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 8,167,185, which issued on May 1, 2012, the disclosure of which is herein incorporated by reference in

its entirety, may be employed with many of the surgical tool embodiments disclosed herein. As was indicated above, the master controller 1001 generally includes master controllers (generally represented by 1003) which are grasped by the surgeon and manipulated in space while the surgeon views 5 the procedure via a stereo display 1002. See FIG. 13. The master controllers 1001 are manual input devices which preferably move with multiple degrees of freedom, and which often further have an actuatable handle for actuating the surgical tools. Some of the surgical tool embodiments disclosed 10 herein employ a motor or motors in their tool drive portion to supply various control motions to the tool's end effector. Such embodiments may also obtain additional control motion(s) from the motor arrangement employed in the robotic system components. Other embodiments disclosed herein obtain all 15 of the control motions from motor arrangements within the

Such motor powered arrangements may employ various sensor arrangements that are disclosed in the published US patent application cited above to provide the surgeon with a 20 variety of forms of feedback without departing from the spirit and scope of the present invention. For example, those master controller arrangements 1003 that employ a manually actuatable firing trigger can employ run motor sensor(s) to provide the surgeon with feedback relating to the amount of force 25 applied to or being experienced by the cutting member. The run motor sensor(s) may be configured for communication with the firing trigger portion to detect when the firing trigger portion has been actuated to commence the cutting/stapling operation by the end effector. The run motor sensor may be a 30 proportional sensor such as, for example, a rheostat or variable resistor. When the firing trigger is drawn in, the sensor detects the movement, and sends an electrical signal indicative of the voltage (or power) to be supplied to the corresponding motor. When the sensor is a variable resistor or the like, 35 the rotation of the motor may be generally proportional to the amount of movement of the firing trigger. That is, if the operator only draws or closes the firing trigger in a small amount, the rotation of the motor is relatively low. When the firing trigger is fully drawn in (or in the fully closed position), 40 the rotation of the motor is at its maximum. In other words, the harder the surgeon pulls on the firing trigger, the more voltage is applied to the motor causing greater rates of rotation. Other arrangements may provide the surgeon with a feed back meter 1005 that may be viewed through the display 1002 45 and provide the surgeon with a visual indication of the amount of force being applied to the cutting instrument or dynamic clamping member. Other sensor arrangements may be employed to provide the master controller 1001 with an indication as to whether a staple cartridge has been loaded 50 into the end effector, whether the anvil has been moved to a closed position prior to firing, etc.

In alternative embodiments, a motor-controlled interface may be employed in connection with the controller 1001 that limit the maximum trigger pull based on the amount of loading (e.g., clamping force, cutting force, etc.) experienced by the surgical end effector. For example, the harder it is to drive the cutting instrument through the tissue clamped within the end effector, the harder it would be to pull/actuate the activation trigger. In still other embodiments, the trigger on the 60 controller 1001 is arranged such that the trigger pull location is proportionate to the end effector-location/condition. For example, the trigger is only fully depressed when the end effector is fully fired.

The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be

80

reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

Although the present invention has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

What is claimed is:

- 1. A disposable loading unit configured to be operably attached to a surgical instrument which is configured to selectively generate at least one control motion for the operation of said disposable loading unit, said disposable loading unit comprising:
 - a carrier operably supporting a cartridge assembly therein; an anvil supported relative to said carrier and being movable from an open position to closed positions upon application of at least one control motion thereto;
 - a housing coupled to said carrier, said housing including means for removably attaching said housing to the surgical instrument;
 - a rotary drive at least partially supported within said housing:
 - a motor supported within said housing and operably interfacing with said rotary drive to selectively apply a rotary motion thereto, wherein said motor is configured to receive power from a power source such that said motor can only selectively receive power from said power source when said means for removably attaching said housing to the surgical instrument is operably coupled to the surgical instrument; and
 - a linear member coupled with said rotary drive which moves axially upon the application of a rotary motion thereto from said motor.
- 2. The disposable loading unit of claim 1, wherein said cartridge assembly comprises a plurality of staples removably stored therein.

- 3. The disposable loading unit of claim 2, wherein said linear member comprises a sled movable between a start position and an end position to eject said staples from said cartridge assembly.
- **4**. The disposable loading unit of claim **3**, wherein said ⁵ linear member further comprises a knife configured to incise tissue captured between said anvil and said cartridge assembly.
- **5**. The disposable loading unit of claim **1**, wherein said cartridge assembly is configured to be removed from said carrier and replaced with a different cartridge assembly.
- **6.** A stapling sub-system configured to be operably engaged with a surgical instrument system, said stapling subsystem comprising:
 - a staple cartridge carrier;
 - a staple cartridge assembly supported by said staple cartridge carrier;
 - an anvil supported relative to said staple carridge carrier and movable from an open position to a closed position; 20
 - a housing, wherein said staple cartridge carrier extends from said housing, and wherein said housing comprises a housing connector removably attachable to the surgical instrument system; and
 - a rotary drive system, comprising
 - a rotary shaft;
 - a translatable drive member operably engaged with said rotary shaft, wherein said translatable drive member is selectively translatable through said staple cartridge assembly from a start position to an end position when a rotary motion is applied to said rotary shaft; and
 - an electric motor operably interfacing with said rotary shaft to selectively apply said rotary motion to said rotary shaft, wherein said electric motor is operably disconnected from a power source when said housing is not attached to the surgical instrument system, and wherein said electric motor is operably connected to the power source when said housing is attached to the surgical instrument system.
- 7. The stapling sub-system of claim 6, wherein said staple cartridge assembly comprises a plurality of staples removably stored therein.
- **8**. The stapling sub-system of claim **7**, wherein said trans- 45 latable drive member comprises a sled movable between said start position and said end position to eject said staples from said staple cartridge assembly.
- **9**. The stapling sub-system of claim **8**, wherein said translatable drive member further comprises a knife configured to 50 incise tissue captured between said anvil and said staple cartridge assembly.
- 10. The stapling sub-system of claim 6, wherein said staple cartridge assembly is configured to be removed from said staple cartridge carrier and replaced with a different staple 55 cartridge assembly.
- 11. A stapling attachment configured to be operably attached to a surgical instrument system, said stapling attachment comprising:
 - a staple cartridge carrier;
 - a staple cartridge body supported by said staple cartridge carrier, wherein said staple cartridge body comprises a proximal end and a distal end;
 - a plurality of staples removably stored in said staple cartridge body;
 - an anvil supported relative to said staple cartridge carrier and movable from an open position to a closed position;

82

- a housing, wherein said staple cartridge carrier extends from said housing, and wherein said housing is removably attachable to the surgical instrument system;
- an electric motor configured to produce rotational motion, wherein said electric motor selectively receives power from a power source only when said housing is coupled to said surgical instrument system; and
- drive means for converting the rotational motion produced by said electric motor to translational motion to eject said staples from said staple cartridge body.
- 12. The stapling attachment of claim 11, wherein said drive means comprises a sled movable between a proximal position and a distal position to eject said staples from said staple cartridge body.
- 13. The stapling attachment of claim 12, wherein said drive means further comprises a knife configured to incise tissue captured between said anvil and said staple cartridge body.
- 14. The stapling attachment of claim 11, wherein said staple cartridge body is configured to be removed from said staple cartridge carrier and replaced with a different staple cartridge body.
- 15. The stapling attachment of claim 11, wherein the translational motion is directed toward said distal end.
- 16. A loading unit configured to be operably attached to a surgical instrument which is configured to selectively generate at least one control motion for the operation of said loading unit, said loading unit comprising:
 - an end effector;
 - a housing including means for removably attaching said housing to the surgical instrument;
 - a rotary drive at least partially supported within said housing;
 - a motor supported within said housing and operably interfacing with said rotary drive to selectively apply a rotary motion thereto, wherein said motor is configured to receive power from a power source such that said motor can only selectively receive power from said power source when said means for removably attaching said housing to the surgical instrument is operably coupled to the surgical instrument; and
 - a linear member coupled with said rotary drive which moves axially upon the application of a rotary motion thereto from said motor.
- 17. A stapling sub-system configured to be operably engaged with a surgical instrument system, said stapling sub-system comprising:
 - a stapling portion;
 - a housing, wherein said stapling portion extends from said housing, and wherein said housing comprises a housing connector removably attachable to the surgical instrument system; and
 - a rotary drive system, comprising
 - a rotary shaft;
 - a translatable drive member operably engaged with said rotary shaft, wherein said translatable drive member is selectively translatable through said stapling portion from a start position to an end position when a rotary motion is applied to said rotary shaft; and
 - an electric motor operably interfacing with said rotary shaft to selectively apply said rotary motion to said rotary shaft, wherein said electric motor is operably disconnected from a power source when said housing is not attached to the surgical instrument system, and wherein said electric motor is operably connected to the power source when said housing is attached to the surgical instrument system.

18. A stapling attachment configured to be operably attached to a surgical instrument system, said stapling attachment comprising:

- a staple cartridge body comprising a proximal end and a distal end;
- a plurality of staples removably stored in said staple cartridge body;
- an anvil supported relative to said staple cartridge body;
- a housing removably attachable to the surgical instrument system;
- an electric motor configured to produce rotational motion, wherein said electric motor selectively receives power from a power source only when said housing is coupled to said surgical instrument system; and
- drive means for converting the rotational motion produced 15 by said electric motor to translational motion to eject said staples from said staple cartridge body.

* * * * *