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BIOMEDICAL PATCHES WITH ALIGNED promote new cell growth along the fibers , such that cell 
FIBERS propagation in one or more desired directions may be 

achieved . 
CROSS - REFERENCE TO RELATED One or more structures provided may be created using an 

APPLICATIONS 5 apparatus that includes one or more first electrodes that 
define an area and / or partially circumscribe an area . For 

This application is a continuation of U.S. patent applica example , a single first electrode may enclose the area , or a 
tion Ser . No. 16 / 795,057 , filed Feb. 19 , 2020 , which is a plurality of first electrode ( s ) may be positioned on at least a 
continuation of U.S. patent application Ser . No. 16 / 540,548 , portion of the perimeter of the area . A second electrode is 
filed Aug. 14 , 2019 , now U.S. Pat . No. 10,617,512 , which is 10 positioned within the area . In exemplary embodiments , 
a continuation of U.S. patent application Ser . No. 15/497 , when the electrodes are electrically charged at a first polar 
691 , filed Apr. 26 , 2017 , which is a continuation of U.S. ity , and a spinneret dispensing a polymer ( e.g. , toward the 
patent application Ser . No. 13 / 703,210 , filed on Mar. 20 , second electrode ) is electrically charged at a second polarity 
2013 , now U.S. Pat . No. 10,149,749 , which is a national opposite the first polarity , the dispensed polymer forms a 
stage application under 35 U.S.C. § 371 of International plurality of fibers extending from the second electrode to the 
Patent Application No. PCT / US2011 / 040691 filed on Jun . first electrodes . Further , electrodes with rounded ( e.g. , con 
16 , 2011 , which claims the benefit of U.S. Provisional vex ) surfaces may be arranged in an array , and a fibrous 
Application No. 61 / 355,712 , filed Jun . 17 , 2010 , all of which structure created using such electrodes may include an array 
are incorporated herein by reference in their entirety . of wells at positions corresponding to the positions of the 

20 electrodes . 
STATEMENT REGARDING FEDERALLY In some embodiments , an artificial dura mater comprising 

SPONSORED RESEARCH & DEVELOPMENT at least a hydrophobic and biodegradable electrospun layer , 
wherein said layer comprises ( a ) at least one synthetic 

This invention was made with government support under biomedical polymer and ( b ) fibers with a diameter of 1-1000 
OD000798 awarded by the National Institutes of Health and 25 nm is disclosed . In some embodiments , the artificial dura 
under ECS0335765 awarded by the National Science Foun- mater consists essentially of synthetic materials . 
dation . The government has certain rights in the invention . In some embodiments , a method of treating a subject 

having a defective dura mater , the method comprising 
BACKGROUND selecting an artificial dura mater that comprises at least one 

30 synthetic polymer and fibers with a diameter of 1-1000 nm , 
Numerous surgical procedures result in the perforation or and applying said artificial dura mater proximate to said 

removal of biological tissue , such as the water - tight fibrous defective dura mater in said subject , is disclosed . In some 
membrane surrounding the brain known as the dura mater . embodiments , the artificial dura mater is as described else 
In some instances , such as minimally invasive neurosurgical where herein . 
procedures , relatively few small holes are created in the dura 35 A multi - laminar electrospun nanofiber scaffold for use in 
mater , while in others , such as the surgical resection of repairing a defect in a tissue substrate is provided . The 
advanced tumors , large sections of the dura mater may be multi - laminar electrospun nanofiber scaffold includes a first 
removed . In all of these cases , the tissue barrier surrounding layer formed by a first plurality of electrospun polymeric 
the brain must be repaired in order to prevent damage to fibers , and a second layer formed by a second plurality of 
cortical tissues and leakage of cerebrospinal fluid . To facili- 40 electrospun polymeric fibers . The second layer is combined 
tate this repair , neurosurgeons utilize sheets of polymeric with the first layer . At least a first portion of the multi 
materials or processed tissue that act like native dura , known laminar electrospun nanofiber scaffold includes a higher 
as dural substitutes . density of fibers than a second portion of the multi - laminar 

At least some known dural substitutes utilized in neuro- electrospun nanofiber scaffold , and the first portion com 
surgical clinics are composed of an acellular collagen matrix 45 prises a higher tensile strength than the second portion . The 
obtained from isolated bovine or porcine tissues . While multi - laminar electrospun nanofiber scaffold is configured to 
generally accepted in the field , such xenogenic dural sub- degrade via hydrolysis after at least one of a predetermined 
stitutes may increase the incidence of adhesions and con- time or an environmental condition . The multi - laminar elec 
tractures , transmit various zoonotic diseases to patients , and trospun nanofiber scaffold is configured to be applied to the 
generally reduce patient outcome following surgery . Fur- 50 tissue substrate containing the defect . The multi - laminar 
thermore , processed collagenous grafts are exceedingly electrospun nanofiber scaffold is sufficiently flexible to 
expensive , costing patients and insurance companies thou- facilitate application of the multi - laminar electrospun nano 
sands of dollars per procedure . fiber scaffold to uneven surfaces of the tissue substrate , and 

In addition while cell microarrays may be useful in is sufficiently flexible to enable movement of the multi 
biomedical research and tissue engineering , at least some 55 laminar electrospun nanofiber scaffold by the tissue sub 
known techniques for producing such cell microarrays may strate . 
be costly and time consuming , and may require the use of A multi - laminar electrospun nanofiber scaffold for use in 
specialized , sophisticated instrumentation . repairing a defect in a tissue substrate is provided . The 

multi - laminar electrospun nanofiber scaffold includes a first 
SUMMARY 60 layer formed by a first plurality of electrospun polymeric 

fibers , and a second layer formed by a second plurality of 
One or more embodiments described herein provide struc- electrospun polymeric fibers . The second layer is combined 

tures having a plurality of aligned ( e.g. , radially aligned with the first layer . At least a first portion of the multi 
and / or polygonally aligned ) fibers . When such a structure is laminar electrospun nanofiber scaffold includes a higher 
used as a biomedical patch , the alignment of fibers as 65 density of fibers than a second portion of the multi - laminar 
described herein may provide directional cues that influence electrospun nanofiber scaffold , and the first portion includes 
cell propagation . For example , the structures provided may a higher tensile strength than the second portion . The first 
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layer and the second layer are configured to separate via FIG . 9 is a diagram of a collector with a central electrode , 
hydrolysis after at least one of a predetermined time or an an inner peripheral electrode defining an inner enclosed area , 
environmental condition . The multi - laminar electrospun and an outer peripheral electrode defining an outer enclosed 
nanofiber scaffold is configured to be applied to the tissue 
substrate containing the defect . The multi - laminar electro- 5 FIG . 10 is a diagram of a concentric biomedical patch that 
spun nanofiber scaffold is sufficiently flexible to facilitate may be produced utilizing the collector shown in FIG . 9 in 
application of the multi - laminar electrospun nanofiber scaf- conjunction with the electrospinning system shown in FIG . 
fold to uneven surfaces of the tissue substrate , and is 1 . 
sufficiently flexible to enable movement of the multi - laminar FIG . 11 is a flowchart of an exemplary method for 
electrospun nanofiber scaffold by the tissue substrate . producing a structure of radially aligned fibers using a 
A three - dimensional electrospun nanofiber scaffold for peripheral electrode defining an enclosed area and a central 

use in repairing a defect in a tissue substrate is provided . The electrode positioned approximately at a center of the 
three - dimensional electrospun nanofiber scaffold includes a enclosed area . 
first layer formed by a first plurality of electrospun poly- FIG . 12 is a flowchart of an exemplary method for 
meric fibers , and a second layer formed by a second plurality repairing a defect , insult , or void in a biological tissue . 
of electrospun polymeric fibers . The second layer is com- FIG . 13 is a schematic illustration of a cellular infiltration 
bined with the first layer . At least a first portion of the of a biomedical patch from intact dural tissue apposing the 
three - dimensional electrospun nanofiber scaffold includes a edge of a biomedical patch . 
higher density of fibers than a second portion of the three- 20 FIG . 14A , FIG . 14B , FIG . 14C , and FIG . 14D are 
dimensional electrospun nanofiber scaffold , and the first fluorescence micrographs comparing the migration of cells 
portion comprises a higher tensile strength than the second when dura tissues were cultured on scaffolds of radially 
portion . The three - dimensional electrospun nanofiber scaf- aligned nanofibers and randomly oriented nanofibers for 4 
fold is configured to degrade via hydrolysis after at least one days . FIG . 14A is a fluorescence micrograph of dural 
of a predetermined time or an environmental condition . The 25 fibroblasts stained with fluorescein diacetate ( FDA ) migrat 
three - dimensional electrospun nanofiber scaffold is config- ing along radially aligned nanofibers . FIG . 14B is a fluo 
ured to be applied to the tissue substrate containing the rescence micrograph of dural fibroblasts stained with FDA 
defect . The three - dimensional electrospun nanofiber scaffold migrating along random fibers . FIG . 14C is a fluorescence 
is sufficiently flexible to facilitate application of the three micrograph of dural fibroblasts stained with FDA migrating 
dimensional electrospun nanofiber scaffold to uneven sur 30 along radially aligned nanofibers . FIG . 14D is a fluorescence 
faces of the tissue substrate , and is sufficiently flexible to micrograph of dural fibroblasts stained with FDA migrating 

along random fibers . enable movement of the three - dimensional electrospun FIG . 15A , FIG . 15B , and FIG . 15C are schematic dia nanofiber scaffold by the tissue substrate . grams of a custom cell culture system designed to model the This summary introduces a subset of concepts that are 35 wound healing response of defects or voids in a biological described in more detail below . This summary is not meant tissue . FIG . 15A is a diagram of a custom cell culture system to identify essential features , and should not be read as including a metal ring . FIG . 15B is a diagram of a custom limiting in any way the scope of the claimed subject matter . cell culture system including a central silicone tube . FIG . 
15C is a top view of a diagram of a custom cell culture 

BRIEF DESCRIPTION OF THE DRAWINGS 40 system showing the location of a central fiber scaffold and 
a surrounding region seeded with fibroblast cells . 

The embodiments described herein may be better under- FIG . 16A , FIG . 16B , FIG . 16C , and FIG . 16D are 
stood by referring to the following description in conjunc- fluorescence micrographs showing cell morphology and 
tion with the accompanying drawings . distribution on scaffolds of radially aligned nanofibers and 
FIG . 1 is a diagram illustrating a perspective view of an 45 randomly oriented nanofibers with and without fibronectin 

example electrospinning system for producing a structure of coating after incubation for 1 day . FIG . 16A is a micrograph 
radially aligned fibers . showing cell morphology and distribution on scaffolds of 
FIG . 2 is a diagram illustrating an electric field generated radially aligned nanofibers . FIG . 16B is a micrograph show 

by the electrospinning system shown in FIG . 1 . ing cell morphology and distribution on scaffolds of ran 
FIG . 3 is a diagram of an electrode removed from the 50 domly aligned nanofibers . FIG . 16C is a micrograph show 

electrospinning system shown in FIG . 1 and having a ing cell morphology and distribution on scaffolds of radially 
plurality of fibers deposited thereon forming a biomedical aligned nanofibers . FIG . 16D is a micrograph showing cell 
patch . morphology and distribution on scaffolds of randomly 

FIG . 4 is a photograph of a biomedical patch including a aligned nanofibers . 
FIG . 17A , FIG . 17B , FIG . 17C , and FIG . 17D are plurality of radially aligned electrospun fibers deposited on 

a peripheral electrode . fluorescence micrographs showing the migration of dura 
fibroblasts seeded on fibronectin - coated scaffolds of radially FIG . 5 is a scanning electron microscope ( SEM ) image of aligned nanofibers . FIG . 17A is a fluorescence micrograph the biomedical patch shown in FIG . 4 , further illustrating showing the migration of dura fibroblasts seeded on that the fibers of the biomedical patch are radially aligned . 60 fibronectin - coated scaffolds of radially aligned nanofibers FIG . 6 is an illustration of a solid fiber spinneret . for 1 day . FIG . 17B is a fluorescence micrograph showing FIG . 7 is an illustration of a hollow fiber spinneret . the migration of dura fibroblasts seeded on fibronectin 

FIG . 8 is an illustration of a biomedical patch layer with coated scaffolds of radially aligned nanofibers for 3 days . 
a plurality of randomly oriented fibers , a biomedical patch FIG . 17C is a fluorescence micrograph showing the migra 
layer with a plurality of radially aligned fibers , and a 65 tion of dura fibroblasts seeded on fibronectin - coated scaf 
multi - layer biomedical patch including multiple orders of folds of radially aligned nanofibers for 7 days . FIG . 17D is 
fibers . a magnified view of the fluorescence micrograph of FIG . 

55 



US 11,071,617 B2 
5 6 

17C showing the migration of dura fibroblasts seeded on magnified optical microscopy image of the highlighted area 
fibronectin - coated scaffolds of radially aligned nanofibers labeled 27D of FIG . 27B . FIG . 27E is a magnified optical 
for 7 days . microscopy image of the highlighted area labeled 27E of 
FIG . 18 is an illustration of a method utilized to determine FIG . 27B . FIG . 27F is a magnified optical microscopy image 

the area of remaining acellular region of the nanofiber 5 of the highlighted area labeled 27F of FIG . 27B . 
scaffolds within the simulated tissue defect . FIG . 28A , FIG . 28B , FIG . 28C , and FIG . 28D are 
FIG . 19 is a graph illustrating the acellular area remaining fluorescence microscopy images illustrating cell growth in a 

on the nanofiber scaffold within the simulated tissue defect membrane such as the membrane shown in FIGS . 27A - 27F . 
as a function of incubation time . FIG . 28A is an optical fluorescence microscopy image of 
FIG . 20A , FIG . 20B , FIG . 20C , and FIG . 20D are 10 droplets containing cells placed within the wells of a fiber 

fluorescence micrographs showing live dural fibroblasts membrane . FIG . 28B is a fluorescence microscopy image 
labeled with membrane dye on scaffolds of radially aligned array of cells selectively adhered to the microwells within a 
nanofibers with fibronectin coating . FIG . 20A is a fluores- nanofiber membrane . FIG . 28C is a fluorescence microscopy 
cence micrographs showing live dural fibroblasts labeled image of seeded cell microarrays . FIG . 28D is a fluorescence 
with membrane dye on scaffolds of radially aligned nano- 15 microscopy image of the same cell microarray shown in 
fibers with fibronectin coating after a 1 - day culture . FIG . FIG . 28C after incubation for three days . 28A - 28D are 
20B is a fluorescence micrographs showing live dural fibro- microscopy images illustrating cell growth in a membrane 
blasts labeled with membrane dye on scaffolds of radially such as the membrane shown in FIGS . 27A - 27F . 
aligned nanofibers with fibronectin coating after a 3 - day FIG . 29A and FIG . 29B are microscopy images illustrat 
culture . FIG . 20C is a fluorescence micrographs showing 20 ing neurite propagation in a membrane such as the mem 
live dural fibroblasts labeled with membrane dye on scaf- brane shown in FIGS . 27A - 27F . FIG . 29A is an overlay of 
folds of radially aligned nanofibers with fibronectin coating an optical microscopy image and a fluorescence microscopy 
after a 7 - day culture . FIG . 20D is a fluorescence micro- image . FIG . 29B is an overlay of an optical microscopy 
graphs showing live dural fibroblasts labeled with mem- image and a fluorescence microscopy image adjacent to the 
brane dye on scaffolds of radially aligned nanofibers with 25 region shown in FIG . 29A . 
fibronectin coating after a 7 - day culture and includes an FIG . 30A and FIG . 30B are overlays of an optical micros 
inset of a high magnification image of the same . copy image and a fluorescent microscopy image illustrating 
FIG . 21A , FIG . 21B , FIG . 21C , and FIG . 21D are neuronal network formation from embryoid bodies in a 

fluorescence micrographs demonstrating the organization of membrane such as the membrane shown in FIGS . 27A - 27F . 
cells and extracellular matrix adherent on scaffolds by 30 FIG . 30A is an overlay of an optical microscopy image and 
immunostaining for type I collagen ( green ) and cell nuclei a fluorescent microscopy image illustrating an embryoid 
( blue ) . FIG . 21A is a fluorescence micrograph demonstrating body confined within a microwell , while neurites extend 
the organization of cells and extracellular matrix adherent on peripherally along an underlying fiber pattern . FIG . 30B is 
scaffolds of radially aligned fibers by immunostaining for an overlay of an optical microscopy image and a fluorescent 
type I collagen ( green ) and cell nuclei ( blue ) . FIG . 21B is a 35 microscopy image illustrating an embryoid body seeded on 
fluorescence micrograph demonstrating the organization of regions of uniaxially aligned nanofibers within a nanofiber 
cells and extracellular matrix adherent on scaffolds of ran array . 
domly oriented fibers by immunostaining for type I collagen FIG . 31A , FIG . 31B , FIG . 31C , and FIG . 31D are 
( green ) and cell nuclei ( blue ) . FIG . 21C is a fluorescence scanning electron microscopy images illustrating mem 
micrograph demonstrating the organization of cells and 40 branes produced using a variety of electrode arrays . FIG . 
extracellular matrix adherent on scaffolds of radially aligned 31A is a scanning electron microscopy image of a fiber 
fibers by immunostaining for type I collagen ( green ) and cell membrane fabricated using a collector composed of hex 
nuclei ( blue ) . FIG . 21D is a fluorescence micrograph dem- agonal arrays of stainless steel beads . FIG . 31B is a scanning 
onstrating the organization of cells and extracellular matrix electron microscopy image of a fiber membrane fabricated 
adherent on scaffolds of randomly oriented fibers by immu- 45 using a collector composed of hexagonal arrays of stainless 
nostaining for type I collagen ( green ) and cell nuclei ( blue ) . steel beads having a larger diameter than the stainless steel 

FIG . 22 is a graph illustrating the thickness of regenerated beads used to produce the membrane shown in FIG . 31A . 
dura at the center of repaired dural defects over time . FIG . 31C is a scanning electron microscopy image of a fiber 

FIG . 23 is a graph illustrating regenerative collagenous membrane fabricated using a collector composed of a close 
tissue content over time . 50 packed square array of stainless steel beads . FIG . 31D is a 
FIG . 24 is a diagram illustrating a perspective view of an scanning electron microscopy image of a fiber membrane 

example electrospinning system for producing a structure of produced using a collector composed of square arrays of 
fibers aligned in polygons using an array of electrodes . stainless steel microbeads with a gradual increase of the 
FIG . 25 is a diagram illustrating an elevation view of an inter - electrode distance in one direction . 

example modular electrospinning collector . FIG . 32 is a diagram of a collector with peripheral 
FIG . 26 is a diagram illustrating an electric field generated electrodes partially circumscribing an area . 

by an electrospinning system such as the electrospinning 
system shown in FIG . 24 . DETAILED DESCRIPTION 
FIG . 27A , FIG . 27B , FIG . 27C , FIG . 27D , FIG . 27E , and 

FIG . 27F are microscopy images of a membrane produced 60 Embodiments provided herein facilitate repairing biologi 
using a collector with an array of electrodes , such as the cal tissue with the use of a biomedical patch including a 
collector shown in FIG . 24. FIG . 27A is an optical micros- plurality of fibers . Such fibers may have a very small 
copy image of a membrane including an inset illustrating a cross - sectional diameter ( e.g. , from 1-1000 nanometers ) 
magnification of the same . FIG . 27B is an optical micros- and , accordingly , may be referred to as nanofibers . While 
copy image of a membrane including highlighted areas . FIG . 65 biomedical patches are described herein with reference to 
27C is a magnified optical microscopy image of the high- dura mater and use as a dural substitute , embodiments 
lighted area labeled 27C of FIG . 27B . FIG . 27D is a described may be applied to any biological tissue . Moreover , 
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although described as biomedical patches , structures with migrate over a very long distance in a highly correlated 
aligned fibers may be used for other purposes . Accordingly , fashion with constant velocity on a uniaxially aligned , 
embodiments described are not limited to biomedical fibrous scaffold . 
patches . Electrospinning is an enabling technique which can pro 

In operation , biomedical patches provided herein facili- 5 duce nanoscale fibers from a large number of polymers . The 
tate cell growth and may be referred to as “ membranes , ” electrospun nanofibers are typically collected as a randomly 
“ scaffolds , " " matrices , ” or “ substrates . ” Such biomedical oriented , nonwoven mat . Uniaxially aligned arrays of nano 
patches further facilitate cell migration from a perimeter of fibers can also be obtained under certain conditions , spe 
the patch to a center of the biomedical patch . Biomedical cifically when employing an air - gap collector or a mandrel 
patches with aligned fibers , as described herein , may pro- 10 rotating at a high speed . However , uniaxially aligned nano 
mote significantly faster healing and / or regeneration of fiber scaffolds promote cell migration only along one spe 
tissue such as the dura mater than substitutes lacking nano- cific direction and are thus not ideally suited as dural 
scopic organization and directional cues . substitutes . 

Dura mater is a membranous connective tissue located at In order to promote cell migration from the surrounding 
the outermost of the three layers of the meninges surround- 15 tissue to the center of a dural defect and shorten the time for 
ing the brain and spinal cord , which covers and supports the healing and regeneration of dura mater , a surface patterned 
dural sinuses and carries blood from the brain towards the with aligned ( e.g. , aligned radially and / or in one or more 
heart . Dural substitutes are often needed after a neurosur- polygons ) , nanoscale features would be highly advantageous 
gical procedure to repair , expand , or replace the incised , as an artificial dural substitute . More specifically , scaffolds 
damaged , or resected dura mater . 20 constructed with aligned nanofibers could meet such a 

Although many efforts have been made , the challenge to demand by guiding and enhancing cell migration from the 
develop a suitable dural substitute has been met with limited edge of a dural defect to the center . 
success . Autografts ( e.g. , fascia lata , temporalis fascia , and Many polymers are available for use in electrospinning . 
pericranium ) are preferable because they do not provoke In some embodiments described herein , nanofibers for dura 
severe inflammatory or immunologic reactions . Potential 25 substitutes are produced as the electrospun polymer from 
drawbacks of autografts include the difficulty in achieving a poly ( e - caprolactone ) ( PCL ) , an FDA approved , semicrystal 
watertight closure , formation of scar tissue , insufficiently line polyester that can degrade via hydrolysis of its ester 
accessible graft materials to close large dural defects , linkages under physiological conditions with nontoxic deg 
increased risk of infection , donor site morbidity , and the radation products . This polymer has been extensively uti 
need for an additional operative site . Allografts and xeno- 30 lized and studied in the human body as a material for 
grafts are often associated with adverse effects such as graft fabrication of drug delivery carriers , sutures , or adhesion 
dissolution , encapsulation , foreign body reaction , scarring , barriers . As described herein , electrospun PCL nanofibers 
adhesion formation , and toxicity - induced side effects from may be aligned to generate scaffolds that are useful as dural 
immunosuppressive regimens . Lyophilized human dura substitutes . 
mater as a dural substitute has also been reported as a source 35 Embodiments provided herein facilitate producing a 
of transmittable diseases , specifically involving prions , such novel type of artificial tissue substitute including a poly 
as Creutzfeldt - Jakob disease . meric nanofiber material , which is formed through a novel 

In terms of materials , non - absorbable synthetic polymers , method of electrospinning . This polymeric material includes 
such as silicone and expanded polytetrafluoroethylene non - woven nanofibers ( e.g. , fibers having a diameter of 
( PTFE ) , often cause serious complications that may include 40 1-1000 nanometers ) which are aligned within a material 
induction of granulation tissue formation due to their sheet . 
chronic stimulation of the foreign body response . Natural In exemplary embodiments , a material with aligned nano 
absorbable polymers , including collagen , fibrin , and cellu- fibers is formed through a novel method of electrospinning 
lose , may present a risk of infection and disease transmis- that employs a collector including one or more first , or 
sion . As a result , synthetic polymers such as poly ( 3 - hy- 45 “ peripheral , ” electrodes defining an area and / or at least 
droxybutyrate - co - 3 - hydroxyvalerate ) ( PHBV ) , poly ( lactic partially circumscribing the area , and a second , or " inner , ” 
acid ) ( PLA ) , polyglycolic acid ( PGA ) , PLA - PCL - PGA ter- electrode positioned within the area . When the electrodes are 
nary copolymers , and hydroxyethylmethacrylate hydrogels electrically charged at a first polarity , and a spinneret dis 
have recently attracted attention as biodegradable implant pensing a polymer ( e.g. , toward the inner electrode ) is 
materials for dural repair . Methods and systems described 50 electrically charged at a second polarity opposite the first 
herein may be practiced with these materials and / or any polarity , the dispensed polymer forms a plurality of fibers 
biomedical polymer . extending from the inner electrode to the peripheral elec 

In order to facilitate successful regeneration and / or repair trode ( s ) . Electrodes may include a rounded ( e.g. , convex ) 
of the dura mater following surgery , a synthetic dural surface , such that a depression , or “ well ” , is formed in the 
substitute or biomedical patch should promote : i ) adhesion 55 electrode - facing side of a structure of fibers . Alternatively , 
of dural fibroblasts ( the primary cell type present in the dura ) electrodes may include a concave surface , such that a well 
to the surface of the biomedical patch ; ii ) migration of dural is formed in the side of the structure facing away from the 
fibroblasts from the periphery of the biomedical patch electrodes . 
toward the center ; and iii ) minimal immune response . To In some embodiments , the collector includes a single 
date , synthetic dural substitutes have been tested only in the 60 inner electrode and a single peripheral electrode . In other 
form of foils , films , meshes , glues , and hydrogels . Due to the embodiments , the collector includes a plurality of peripheral 
isotropic surface properties , such substitutes are not well- electrodes , and the dispensed polymer may form fibers 
suited for cell attachment and directed , inward migration . extending between such peripheral electrodes in addition to 

This problem can be potentially solved by fabricating the fibers extending from the inner electrode to one or more of 
polymers as nanoscale fibers with a specific order and 65 the peripheral electrodes . 
organization . For example , the speed of cell migration may Further , in some embodiments , multiple areas are defined 
be very low on flat , isotropic surfaces , whereas cells may and / or partially circumscribed by peripheral electrodes . For 
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example , an inner peripheral electrode may define an inner of between 5 square centimeters and 100 square centimeters . 
enclosed area surrounding the inner electrode , and an outer Peripheral electrode 110 may have a height 112 of between 
peripheral electrode may define an outer enclosed area 0.5 and 2.0 centimeters . Central electrode 115 may include 
surrounding the inner peripheral electrode . In other embodi- a metallic needle and / or any other structure terminating in a 
ments , electrodes are arranged in an array , such as a grid 5 point or set of points . 
and / or other polygonal pattern ( e.g. , a hexagonal pattern ) , In one embodiment , enclosed area 125 defines a horizon 
and multiple , partially overlapping areas may be defined by tal plane 127. Spinneret 120 is aligned with central electrode 
such electrodes . For example , an inner electrode of one area 115 and vertically offset from horizontal plane 127 at a 
may function as a peripheral electrode of another area . In variable distance . For example , spinneret 120 may be ver 
such embodiments , the dispensed polymer may form fibers 10 tically offset from horizontal plane 127 at a distance of 1 
extending between the electrodes of the collector , such that centimeter to 100 centimeters . 
the fibers define the sides of a plurality of polygons , with the Spinneret 120 is configured to dispense a polymer 140 
electrodes positioned at the vertices of the polygons . while electrically charged at a second amplitude and / or 

Unlike known nanofiber structures , aligned nanofiber polarity opposite the first polarity . As shown in FIG . 1 , 
materials provided herein are capable of presenting 15 spinneret 120 is electrically coupled to power supply 130 by 
nanoscale topographical cues to local cells that enhance and a conductor 145. Power supply 130 is configured to charge 
direct cell migration ( e.g. , throughout the material sheet or spinneret 120 at the second amplitude and / or polarity via 
into the center of the material sheet ) . As a result , aligned conductor 145. In some embodiments , power supply 130 
nanofiber materials may induce faster cellular migration and provides a direct current ( DC ) voltage ( e.g. , between 10 
population than randomly oriented materials , such as pro- 20 kilovolts and 17 kilovolts ) . In one embodiment , conductor 
cessed gold - standard collagen matrices . Materials described 145 is charged positively , and conductor 135 is charged 
herein may be particularly useful as a substrate for various negatively or grounded . In some embodiments , power sup 
types of biomedical patches or grafts designed to induce ply 130 is configured to allow adjustment of a current , a 
wound protection , closure , healing , repair , and / or tissue voltage , and / or a power . 
regeneration . In one embodiment , spinneret 120 is coupled to a syringe 
A scaffold of aligned nanofibers , as described herein , 150 containing polymer 140 in a liquid solution form . 

possesses significant potential as an artificial dural substi Syringe 150 may be operated manually or by a syringe pump 
tute , in that it is capable of encouraging robust cell migration 155. In an exemplary embodiment , spinneret 120 is a 
from apposed intact dura and promoting rapid cellular metallic needle having an aperture between 100 micrometers 
population of the nanofiber matrix required to induce dural 30 and 2 millimeters in diameter . 
repair . In addition , such nanofiber materials offer the advan- As syringe 150 pressurizes polymer 140 , spinneret 120 
tage of being inexpensive to produce , fully customizable , dispenses polymer 140 as a stream 160. Stream 160 has a 
and resorbable . Nanofiber dural substitutes may also reduce diameter approximately equal to the aperture diameter of 
the risk of contractures and fully eliminate the risk of spinneret 120. Stream 160 descends toward collector 105 . 
transmitted zoonotic disease when applied intraoperatively , 35 For example , stream 160 may fall downward under the 
generally improving patient outcomes following surgery . influence of gravity and / or may be attracted downward by a 
Inner Electrode and Peripheral Electrode ( s ) charged conductive surface 162 positioned below collector 
FIG . 1 is a diagram illustrating a perspective view of an 105. For example , conductive surface 162 may be electri 

exemplary electrospinning system 100 for producing a struc- cally coupled to conductor 135 and charged at the same 
ture of radially aligned fibers . System 100 includes a col- 40 amplitude and / or polarity as peripheral electrode 110 and 
lector 105 with a first electrode 110 , which may be referred central electrode 115. As stream 160 descends , polymer 140 
to as a peripheral electrode , and a second electrode 115 , forms one or more solid polymeric fibers 165 . 
which may be referred to as an inner electrode or central In some embodiments , a mask 164 composed of a con 
electrode . System 100 also includes a spinneret 120. Periph- ducting or non - conducting material is applied to collector 
eral electrode 110 defines an enclosed area 125 , and central 45 105 to manipulate deposition of fibers 165. For example , 
electrode 115 is positioned approximately at a center of mask 164 may be positioned between spinneret 120 and 
enclosed area 125 . collector 105 such that no fibers 165 are deposited on 

System 100 is configured to create an electric potential collector 105 beneath mask 164. Moreover , mask 164 may 
between collector 105 and spinneret 120. In one embodi- be used as a time - variant mask by adjusting its position 
ment , peripheral electrode 110 and central electrode 115 are 50 while spinneret 120 dispenses polymer 140 , facilitating 
configured to be electrically charged at a first amplitude spatial variation of fiber density on collector 105. While 
and / or polarity . For example , peripheral electrode 110 and mask 164 is shown as circular , mask 164 may have any 
central electrode 115 may be electrically coupled to a power shape ( e.g. , rectangular or semi - circular ) and size suitable 
supply 130 via a conductor 135. Power supply 130 is for use with system 100. Alternatively , or in addition , 
configured to charge peripheral electrode 110 and central 55 deposition of fibers 165 on collector 105 may be manipu 
electrode 115 at the first amplitude and / or polarity via lated by adjusting the position of collector 105 with respect 
conductor 135 . to spinneret 120 or by spatially varying the electrical poten 

In the embodiment illustrated in FIG . 1 , peripheral elec- tial applied between the spinneret 120 and / or the electrodes 
trode 110 is a ring defining an enclosed area 125 which is making up the collector 105. For example , positioning one 
circular . For example , circular enclosed area 125 may have 60 side of collector 105 directly beneath spinneret 120 may 
a diameter of between 1 centimeter and 20 centimeters . In cause more fibers 165 to be deposited on that side than are 
other embodiments , peripheral electrode 110 may be any deposited on the opposite side of collector 105 . 
shape suitable for use with the methods described herein . FIG . 2 is a diagram 200 illustrating an electric field 
For example , peripheral electrode 110 may define an ellip- generated by system 100. Diagram 200 shows a two dimen 
tical , ovular , rectangular , square , triangular , and / or other 65 sional , cross - sectional view of electric field strength vectors 
rectilinear or curvilinear enclosed area 125. In some embodi- between spinneret 120 and peripheral electrode 110 and 
ments , peripheral electrode 110 defines an enclosed area 125 central electrode 115 of collector 105 ( shown in FIG . 1 ) . 
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Unlike known electrospinning systems , the electric field spinneret 120A includes a conical body 180 defining a center 
vectors ( stream lines ) in the vicinity of the collector are split line 182. At a dispensing end 184 , conical body 180 includes 
into two populations , pointing toward the peripheral elec- an annulus 186. Annulus 186 defines a circular aperture 
trode 110 and pointing toward the central electrode 115 . 190A , through which polymer 140 may be dispensed . Fibers 

Neglecting the effect of charges on the polymeric fibers , 5 165 produced with solid fiber spinneret 120A have a solid 
the electrical potential field can be calculated using the composition . 
Poisson equation , FIG . 7 is an illustration of a hollow fiber spinneret 120B . 

Like solid fiber spinneret 120A , hollow fiber spinneret 120B 
includes a conical body 180 with an annulus 186 at a 

10 dispensing end 184. Hollow fiber spinneret 120B also V2 V includes a central body 188B positioned within annulus 186 . 
Annulus 186 and central body 188B define an annular 
aperture 190B . Accordingly , when polymer 140 is dispensed where V is the electrical potential , ? is the electrical per by hollow fiber spinneret 120B , fibers 165 have a hollow mittivity of air , and p is the spatial charge density . The 15 composition , with an exterior wall surrounding a cavity . The 

electrical field , E , can then be calculated by taking the exterior wall of a fiber 165 dispensed by hollow fiber negative gradient of the electrical potential field , E = -VV . spinneret 120B defines an outer diameter corresponding to 
Here , the electrical field was calculated to verify the align the inner diameter of annulus 186 and an inner diameter 
ment effect demonstrated by deposited fibers , which was corresponding to the diameter of central body 188B . 
performed using the software COMSOL3.3 . 20 Accordingly , the outer diameter and inner diameter of hol 

FIG . 3 is a diagram of peripheral electrode 110 removed low fibers 165 may be adjusted by adjusting the diameters of 
from electrospinning system 100 ( shown in FIG . 1 ) and annulus 186 and central body 188B . 
having a plurality of fibers 165 deposited thereon forming a Hollow fiber spinneret 120B facilitates incorporating a 
biomedical patch 170. Fibers 165 extend radially between a substance , such as a biological agent , growth factor , and / or 
center 175 corresponding to the position of central electrode 25 a drug ( e.g. , a chemotherapeutic substance ) , into biomedical 
115 ( shown in FIG . 1 ) and a perimeter 178 corresponding to patch 170. For example , the substance may be deposited 
the position of peripheral electrode 110. For example , perim- within a cavity defined by hollow fibers 165 of biomedical 
eter 178 may be a circular perimeter about center 175 patch 170. In one embodiment , polymer 140 is selected to 
defining a diameter of between 1 centimeter and 6 centime- create porous and / or semi - soluble fibers 165 , and the sub 
ters . 30 stance is dispensed from the cavity through fibers 165. In 

Biomedical patch 170 is illustrated with a small quantity another embodiment , polymer 140 is degradable , and the 
of fibers 165 in FIG . 3 for clarity . In some embodiments , substance is dispensed as fibers 165 degrade in vivo . For 
biomedical patch 170 includes thousands , tens of thousands , example , fibers 165 may be configured to degrade within 12 
hundreds of thousands , or more fibers 165 , evenly distrib- months , 6 months , or 3 months . The degradation rate of 
uted throughout enclosed area 125 ( shown in FIG . 1 ) of 35 polymer 140 may be manipulated by adjusting a ratio of 
peripheral electrode 110. Even with millions of fibers 165 , constituent polymers within polymer 140 . 
biomedical patch 170 is flexible and / or pliable , facilitating In another embodiment , a substance is delivered by solid 
application of biomedical patch 170 to uneven biological fibers 165. For example , a solid fiber 165 may be created 
tissue surfaces , such as the surface of the dura mater . from a polymer 140 including the substance in solution . As 

The radial alignment of fibers 165 demonstrates the 40 solid fiber 165 degrades , the substance is released into the 
shortest possible path between perimeter 178 and center surrounding tissue . 
175. Accordingly , biomedical patch 170 also facilitates cell As shown in FIGS . 6 and 7 , annulus 186 is perpendicular 
migration directly from perimeter 178 to center 175 , to center line 182. In an alternative embodiment , annulus 
enabling a reduction in time required for cells to infiltrate 186 is oblique ( e.g. , oriented at an acute or obtuse angle ) 
and populate applied biomedical patch , and for native tissue 45 with respect to center line 182. The outside diameter of 
to regenerate . fibers 165 may be determined by the inside diameter of 

Fibers 165 have a diameter of 1-1000 nanometers . In one annulus 186 . 
embodiment , fibers have a diameter of approximately 220 Some embodiments facilitate producing a biomedical 
nanometers ( e.g. , 215 nm to 225 nm ) . The diameter of the patch having radially aligned fibers and non - radially aligned 
fibers 165 , thickness of the biomedical patch 170 , and / or 50 fibers . For example , radially aligned fibers may be deposited 
fiber density within the biomedical patch 170 may affect the into a first layer , and non - radially aligned fibers may be 
durability ( e.g. , tensile strength ) of biomedical patch 170 . deposited into a second layer . Alternatively , radially aligned 
Biomedical patch 170 may be produced with various non - radially aligned fibers may be deposited into a single 
mechanical properties by varying the thickness and / or the layer ( e.g. , simultaneously , sequentially , and / or alternately ) . 
fiber density of the biomedical patch 170 by operating 55 Referring to FIG . 1 , system 100 may be used to create 
electrospinning system 100 for relatively longer or shorter randomly oriented fibers by charging or grounding conduc 
durations . tive surface 162. Optionally , peripheral electrode 110 and 
FIG . 4 is a photograph 300 of a biomedical patch 305 central electrode 115 may be uncharged or ungrounded ( e.g. , 

including a plurality of radially aligned electrospun fibers decoupled from conductor 135 ) . 
deposited on a peripheral electrode 110. FIG . 5 is a scanning 60 FIG . 8 is an illustration of a biomedical patch layer 400 
electron microscope ( SEM ) image 310 of biomedical patch with a plurality of randomly oriented fibers 405 and a 
305 , further illustrating that the fibers of biomedical patch biomedical patch layer 410 with a plurality of radially 
305 are radially aligned . aligned fibers 415. As shown in FIG . 8 , biomedical patch 

Referring to FIGS . 1 and 3 , fibers 165 may be solid or layers 400 and 410 may be combined ( e.g. , overlaid ) to 
hollow . In some embodiments , the size and / or structure of 65 produce a multi - layer biomedical patch 420 with both ran 
fibers 165 is determined by the design of spinneret 120. FIG . domly oriented fibers 405 and radially aligned fibers 415 , or 
6 is an illustration of a solid fiber spinneret 120A . Solid fiber any other combination of any number or type of fiber layers . 
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Combining non - radially aligned fibers 405 and radially shape suitable for use with the methods described herein . 
aligned fibers 415 facilitates providing a biomedical patch Moreover , inner enclosed area 515 and outer enclosed area 
that promotes cell migration to a center of the biomedical 525 may have different shapes and / or different centers . 
patch while exhibiting potentially greater durability ( e.g. , In operation with electrospinning system 100 ( shown in 
tensile strength ) than a biomedical patch having only radi- 5 FIG . 1 ) , central electrode 115 and inner peripheral collector 
ally aligned fibers 415. Combining non - radially aligned 505 are charged at the first amplitude and / or polarity ( oppo 
fibers 405 and radially aligned fibers 415 may also enable site the polarity at which spinneret 120 is charged ) while 
spatial control of cell migration and infiltration along an axis spinneret 120 dispenses polymer 140 as stream 160. Stream 
perpendicular to the plane of the biomedical patch , facili- 160 descends toward collector 505 and forms one or more 
tating the formation and organization of specific layers of 10 fibers 530 extending from central electrode 115 to inner 
cells and / or extracellular matrix proteins resembling natural peripheral electrode 510 . 
tissue strata . The charge of the first polarity is removed from central 

In some embodiments , multiple biomedical patch layers electrode 115 ( e.g. , by decoupling central electrode 115 from 
410 with radially aligned fibers 415 may be combined to conductor 135 ) , and outer peripheral electrode 520 is 
create a multi - layer biomedical patch . For example , refer- 15 charged at the first amplitude and / or polarity . Spinneret 120 
ring to FIGS . 1 and 3 , after depositing a first set of fibers on dispenses polymer 140 as stream 160 , which descends 
collector 105 , one may wait for the first set of fibers 165 to toward collector 505 and forms one or more fibers 535 
solidify completely or cure and then deposit a second set of extending from inner peripheral electrode 510 to outer 
fibers 165 on collector 105. The second set of fibers 165 may peripheral electrode 520. Together , fibers 530 and 535 form 
be deposited directly over the first set of fibers 165 on 20 a concentric biomedical patch 550 , as shown in FIG . 10. In 
collector 105. Alternatively , the first set of fibers 165 may be some embodiments , the charge is not removed from central 
removed from collector 105 , and the second set of fibers 165 electrode 115 prior to depositing fibers 535 between inner 
may be deposited on conductive surface 162 and / or collector peripheral electrode 510 and outer peripheral electrode 520 . 
105 and then removed and overlaid on the first set of fibers FIG . 10 is a diagram of a concentric biomedical patch 550 
165. Such embodiments facilitate increased durability of the 25 that may be produced with collector 505 ( shown in FIG . 9 ) . 
biomedical patch , and added spatial control of cell migra- Fibers 530 define an inner area 555 , shown as a circle 
tion / activity , even where only radially aligned fibers are extending from a center 560 to an inner perimeter 565. An 
used . In some embodiments , a hydrogel or polymeric scaf- outer area 570 includes fibers 535 extending approximately 
fold may be disposed between biomedical patch layers 400 from inner perimeter 565 ( e.g. , about 100 um to 2000 um 
and / or biomedical patch layers 410 . 30 inside inner perimeter 565 ) to an outer perimeter 575. Fibers 
A multi - layered biomedical patch may be useful for dural 535 are oriented radially or approximately ( e.g. , within 1 , 3 , 

grafts as well as other tissue engineering applications . or 5 degrees ) radially with respect to center 560 . 
Sequential layers of fibers can be created with varying As shown in FIG . 10 , inner area 555 and outer area 570 
orders ( e.g. , radially aligned or randomly oriented ) and may overlap in an overlapping area 580. In one embodiment , 
densities ( e.g. , low or high fiber density ) , which may allow 35 overlapping area 580 corresponds to a thickness of inner 
specific types of cells to infiltrate and populate select layers peripheral ring 510 ( shown in FIG . 8 ) . Similar to FIG . 3 , 
of the artificial biomedical patch . For example , biomedical concentric biomedical patch 550 is shown in FIG . 10 with a 
patches containing a high fiber density generally prohibit small quantity of fibers 530 and 535 for clarity . In some 
cellular migration and infiltration , while biomedical patches embodiments , inner area 555 and outer area 570 each 
containing a low fiber density generally enhance cellular 40 include thousands , tens of thousands , hundreds of thou 
migration and infiltration . sands , or more fibers 530 and 535 , respectively . Fibers 530 

Overall , the ability to form multi - layered fiber materials , and fibers 535 may be coupled to each other in overlapping 
as described herein , may be extremely beneficial in the area 580. For example , fibers 535 may be deposited before 
construction of biomedical patches designed to recapitulate fibers 530 have completely solidified ( or vice versa ) . In 
the natural multi - laminar structure of not only dura mater , 45 some embodiments , fibers 530 and fibers 535 are deposited 
but also other biological tissues such as skin , heart valve on collector 505 ( shown in FIG . 9 ) simultaneously or in an 
leaflets , pericardium , and / or any other biological tissue . alternating manner . 
Furthermore , one or more layers of a biomedical patch may Embodiments such as those shown in FIGS . 9 and 10 
be fabricated from biodegradable polymers such that the facilitate providing a biomedical patch having a relatively 
resulting nanofiber materials fully resorb following implan- 50 consistent fiber density throughout . For contrast , if fibers 
tation . Manipulation of the chemical composition of the 530 extended from center 560 to outer perimeter 575 , the 
polymers utilized to fabricate these scaffolds may further fiber density at center 560 would be considerably higher 
allow for specific control of the rate of degradation and / or than the fiber density at outer perimeter 575. Low peripheral 
resorption of a biomedical patch following implantation . fiber density may compromise durability of a biomedical 
Some embodiments provide a biomedical patch including 55 patch near an outer perimeter , especially at large diameters 

a plurality of nested ( e.g. , concentric ) areas . FIG . 9 is a ( e.g. , above 5 or 6 centimeters ) . Accordingly , such embodi 
diagram of a collector 505 with a central electrode 115 , a ments further facilitate providing a biomedical patch of large 
first or inner peripheral electrode 510 defining a first or inner diameter ( e.g. , up to 10 or 12 centimeters ) while maintaining 
enclosed area 515 , and a second or outer peripheral electrode durability of the biomedical patch . In some embodiments , a 
520 defining a second or outer enclosed area 525 that is 60 layer of non - radially aligned fibers is combined with bio 
larger than the inner enclosed area 515. In some embodi- medical patch 550 , as described above with regard to FIG . 
ments , outer peripheral electrode 520 is concentrically ori- 8 , which may further enhance durability of biomedical patch 
ented with inner peripheral electrode 510. While inner 550 . 
peripheral electrode 510 and outer peripheral electrode 520 In some embodiments , the spatial fiber density within 
are shown as defining circular enclosed areas 515 , 525 in 65 inner area 555 is different from the spatial fiber density 
FIG . 9 , inner peripheral electrode 510 and outer peripheral within outer area 570. In one example , fibers 530 are 
electrode 520 may define enclosed areas 515 , 525 of any deposited between central electrode 115 and inner peripheral 
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electrode 510 for a first duration , and fibers 535 are depos- example , a biomedical patch having a diameter greater than 
ited between inner peripheral electrode 510 and outer the diameter of an approximately circular defect may be 
peripheral electrode 520 for a second duration . selected 710 . 

While collector 505 and concentric biomedical patch 550 The biomedical patch selected 710 may also include 
are illustrated with circular inner and outer areas , any 5 non - radially aligned ( e.g. , randomly oriented and / or uniaxi 
quantity and shape of peripheral electrodes may be used to ally aligned ) polymeric fibers . For example , radially aligned 
create any number of distinct fiber areas within a biomedical fibers and non - radially aligned fibers may be arranged in 
patch . separate layers . 
FIG . 11 is a flowchart of an exemplary method 600 for In some embodiments , the biomedical patch includes 

producing a structure of radially aligned fibers using a 10 multiple areas of radially aligned fibers . In one embodiment , 
a first set of radially aligned fibers extends from a center of peripheral electrode defining an enclosed area and a central the biomedical patch to a first perimeter and define an inner electrode positioned approximately at a center of the area . A second set of radially aligned fibers extends from the enclosed area . While one embodiment of method 600 is first perimeter to a second perimeter and defines an outer shown in FIG . 11 , it is contemplated that any of the 

operations illustrated may be omitted and that the operations A substance such as a growth factor and / or a drug ( e.g. , may be performed in a different order than is shown . a chemotherapeutic drug ) may be applied 715 to the bio 
Method 600 includes electrically charging 605 the periph- medical patch . For example , the biomedical patch may be 

eral electrode and the central electrode at a first amplitude immersed in the substance to allow the substance to occupy 
and / or polarity ( e.g. , negatively charging or grounding ) . A 20 a cavity within hollow fibers of the biomedical patch , dope 
spinneret approximately aligned with the central electrode is the polymer comprising the fibers in the biomedical patch , 
electrically charged 610 at a second amplitude and / or polar- or coat the surface of the fibers within the biomedical patch . 
ity opposite the first amplitude and / or polarity ( e.g. , posi- The biomedical patch is applied 720 to ( e.g. , overlaid on ) 
tively charged ) . the biological tissue to cover at least a portion of the defect . 
A polymer ( e.g. , a liquid polymer ) is dispensed 615 from 25 For example , the biomedical patch may be applied 720 to 

the spinneret . In an exemplary embodiment , dispensing 615 dura mater tissue , cardiac tissue , and / or any biological tissue 
the polymer forms a plurality of polymeric fibers extending including a defect . In one embodiment , the perimeter of the 
from the central electrode to the peripheral electrode to biomedical patch extends past the perimeter of the defect , 
create a layer of radially aligned fibers . such that the entire defect is covered by the biomedical 
Some embodiments facilitate creating a concentric struc- 30 patch . In some embodiments , the biomedical patch is 

ture of radially aligned fibers using multiple peripheral coupled 725 to the biological tissue with a plurality of 
electrodes . In one embodiment , the peripheral electrode is an sutures , adhesive , and / or any other means of attaching the 
inner peripheral electrode . An outer peripheral electrode biomedical patch to the biological tissue . In an alternative 
defining an outer enclosed area larger than the inner embodiment , the biomedical patch is simply allowed to fuse 
enclosed area is electrically charged 620 at the first ampli- 35 to the biological tissue , such as by adhesion of biological 
tude and / or polarity . The electrical charge may or may not be cells to the biomedical patch . 
removed 622 from the central electrode and / or the inner After the biomedical patch is applied 720 and , optionally , 
peripheral electrode . The polymer is dispensed 625 from the coupled 725 , to the biological tissue , the biological tissue is 
spinneret to create an outer area of radially aligned fibers covered 730. In one embodiment , other tissue overlaying the 
extending from the inner peripheral electrode to the outer 40 defect ( e.g. , dermis and / or epidermis ) is repaired ( e.g. , 
peripheral electrode . sutured closed ) . In another embodiment , one or more pro 

Furthermore , some embodiments facilitate creating a tective layers are applied over the biological tissue . For 
multi - layered structure including both radially aligned fibers example , a bandage may be applied to a skin graft , with or 
and non - radially aligned fibers . The electrical charge is without a protective substance , such as a gel , an ointment , 
removed 630 from the peripheral electrode ( s ) and the central 45 and / or an antibacterial agent . In one embodiment , the pro 
electrode . A conductive surface below the layer of radially tective layer includes a nanofiber structure , such as an 
aligned fibers is electrically charged 635 at the first ampli- additional biomedical patch , as described herein . 
tude and / or polarity . The polymer is dispensed 640 from the Embodiments described herein are operable with any 
spinneret to create a layer of non - radially aligned ( e.g. , neurosurgical procedure involving the repair , replacement , 
randomly oriented and / or uniaxially aligned ) fibers over the 50 or expansion of the dura mater , including , but not limited to , 
layer of radially aligned fibers . a transphenoidal procedure ( e.g. , surgical removal of pitu 
FIG . 12 is a flowchart of an exemplary method 700 for itary adenomas ) , various types of skull base surgeries , 

repairing a defect in a biological tissue . The defect may and / or surgical removal of cranial or spinal tumors ( e.g. , 
include a void , an insult , and / or any other condition resulting meningiomas and / or astrocytomas ) . In one embodiment , a 
in diminished function of the biological tissue . In one 55 biomedical patch may be applied to a bone fracture ( e.g. , a 
embodiment , method 700 includes creating 705 a void in the complex fracture ) . In another embodiment , a biomedical 
biological tissue , and the defect is the created void . For patch may be applied to a defect in the skin ( e.g. a burn ) . 
example , the void may be created 705 by surgical incision to Moreover , such embodiments are operable to provide a 
provide access to an underlying tissue ( e.g. , a tumor ) . In dura mater substitute , a biomedical patch for a skin graft 
another example , the void is created 705 by excising 60 ( e.g. , dermal or epidermal ) , a biomedical patch for tracheal 
necrotic tissue ( e.g. , skin cells ) . One or more biomedical repair , a scaffold for an artificial heart valve leaflet , an 
patches capable of covering the defect are selected 710. For artificial mesh for surgical repair of a gastrointestinal tract 
example , a plurality of biomedical patches may be selected ( e.g. , an abdominal hernia or an ulcer ) , an artificial mesh for 
710 for a large and / or complex ( e.g. , irregularly shaped ) surgical repair of cardiac defects . For example , a cardiac 
defect . The biomedical patch includes a plurality of radially 65 biomedical patch including radially aligned fibers may be 
aligned polymeric fibers extending from a center of the used to promote cardiomyocyte regeneration . Embodiments 
biomedical patch to a perimeter of the biomedical patch . For described herein facilitate providing a cardiac patch of 
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sufficient flexibility to enable movement of the biomedical oriented nanofibers after the same incubation time , indicat 
patch by a biological tissue ( e.g. , cardiomyocytes ) . ing cellular infiltration was incomplete and occurred at a 

In some embodiments , a biomedical patch has a thickness slower rate . 
less than a thickness of the biological tissue being repaired . In order to further investigate the effect of fiber alignment 
As cells migrate along the radial fibers of the biomedical 5 and nanofiber scaffold post - modification on cell migration , 
patch , the biological tissue is regenerated . primary dural fibroblasts isolated from dura tissue were 

Biomedical patches with radially aligned polymeric fibers cultured on scaffolds of radially aligned and randomly 
facilitate reducing the expense of tissue repair , improving oriented nanofibers with and without fibronectin coating . 
tissue healing time , and reducing or eliminating the risk of FIGS . 15A - C are schematic diagrams of a custom - made cell 
zoonotic infection . Moreover , such biomedical patches are 10 culture system designed to model wound healing of tissue 
relatively simple to manufacture , enabling customization of defects . Specifically , dural fibroblasts were selectively 

seeded around the periphery of a circular scaffold of nano shape , size , and chemical composition and improved avail 
ability and non - immunogenicity . In addition , biomedical fibers , effectively forming a 7 - mm “ simulated dural defect ” 

in the center of the sample . patches with radially aligned polymeric fibers exhibit excel FIGS . 16A - 16D are fluorescence micrographs showing lent handling properties due to their cloth - like composition , cell morphology and distribution on scaffolds of radially 
eliminate the need for a second surgery to harvest autolo aligned nanofibers ( FIGS . 16A , 16C ) and randomly oriented 
gous graft tissue , and reduce the risk of contracture and nanofibers ( FIGS . 16B , 16D ) without and with fibronectin 
adhesion when compared with known products . coating after incubation for 1 day . As shown in FIG . 16A , 
Experimental Results 20 many cells could attach to the uncoated scaffolds including 

Dura mater is a complex , fibrous membrane that consists radially aligned nanofibers . In comparison , fewer cells 
of numerous cells and cell types , extracellular matrix pro- poorly attached to the uncoated scaffold of randomly ori 
teins , and trophic factors , all of which play an important role ented nanofibers and cell aggregations were noticed ( FIG . 
in the colonization and duralization of artificial dural sub- 16B ) . Seeded cells were distributed evenly over the entire 
stitutes , and the successful implementation of such biomedi- 25 surface of the fibronectin - coated scaffold of radially aligned 
cal patches in vivo . In order to evaluate the capability of nanofibers , and they exhibited an elongated shape parallel to 
radially aligned nanofibers to interface with natural dura , the axis of nanofiber alignment ( FIG . 16C ) . This result 
promote host cell adhesion to the graft , and enhance host cell indicates that fibronectin coating could enhance the influ 
migration along the graft , an ex vivo model of the surgical ence of topographic cues on cell morphology provided by 
repair of a small dural defect was developed . 30 aligned fibers . The cells could also adhere well to the 

In a typical procedure , an “ artificial dural defect ” was fibronectin - coated scaffold of randomly oriented nanofibers 
introduced into a piece of dura ( 1 cmx1 cm ) by microsur- and cell distribution was more uniform than the uncoated 
gically cutting a small circular hole , 7 mm in diameter , in the samples , though no cell elongation or alignment was 
center of the specimen . A nanofiber - based scaffold was then observed ( FIG . 16D ) . The random organization of cells on 
utilized to repair the artificial defect by overlaying the graft 35 the randomly - oriented nanofiber scaffolds also mimics the 
onto the dural specimen . organization of cells in scar tissue . This suggests that the 

FIG . 13 is a schematic illustration of biological cells aligned scaffolds may assist in reducing scar tissue forma 
extending from intact dural tissue , apposed to the edge of a tion by promoting more regular cell organization / function . 
scaffold , into the central portion of the scaffold along To characterize cell motility on the scaffold , cells were 
radially - aligned nanofibers . The graft covered the entire 40 stained with FDA and fluorescence images were taken at 
simulated dural defect while simultaneously contacting the different time points . FIGS . 17A - 17D are fluorescence 
dural tissue at the periphery of the specimen , and demon- micrographs showing the migration of dura fibroblasts 
strates the ability of native cells in intact tissue to easily seeded on fibronectin - coated scaffolds of radially aligned 
adhere to and migrate across the nanofiber scaffolds . nanofibers for 1 day ( FIG . 17A ) , 3 days ( FIG . 17B ) , and 7 
FIGS . 14A - 14D are a collection of fluorescence micro- 45 days ( FIG . 17C ) . FIG . 17D is a magnified view of FIG . 17C . 

graphs comparing the migration of cells when dural tissues The cells were radially aligned , replicating the alignment of 
were cultured on scaffolds of radially aligned nanofibers fibers underneath , as shown in FIG . 17D . 
( FIGS . 14A , 14C ) and randomly oriented nanofibers ( FIGS . The ability of dural fibroblasts to migrate into and repopu 
14B , 14D ) for 4 days using a custom cell culture system late a simulated dural defect was measured at various time 
( FIG . 15 ) . FIGS . 14C and 14D are magnified views of the 50 points throughout the experiment as an estimate of the 
center portion shown in FIGS . 14A and 14B , respectively . regenerative capacity of the substitute . FIG . 18 is an illus 
The arrow marks the center of the scaffold . tration of the determination ( e.g. , calculation ) of the area of 
As shown in FIG . 14A , dural fibroblasts stained with simulated dural defect remaining on the scaffold at a given 

fluorescein diacetate ( FDA ) migrated from the surrounding time point . FIG . 19 is an illustration of the area of void space 
tissue along the radially aligned nanofibers and further to the 55 as a function of incubation time . In FIG . 19 , “ Random ” 
center of the circular scaffold after incubation for 4 days . It indicates samples with a scaffold of random fibers ; “ Random 
was found that the cells could completely cover the entire F ” indicates samples with a fibronectin - coated scaffold of 
surface of the scaffold in 4 days . In contrast , a void was random fibers ; “ Aligned ” indicates samples with a scaffold 
observed after the same period of incubation time for a of radially aligned fiber ; and “ Aligned F ” indicates samples 
scaffold made of random fibers ( FIG . 14B ) , indicating faster 60 with a fibronectin - coated scaffold of radially aligned fibers . 
migration of native cells on radially - aligned nanofiber scaf- An asterisk ( * ) and a hash ( # ) indicate p < 0.05 for samples 
folds than the random counterparts . It is clear that the compared with Random samples and Random F samples in 
scaffold made of radially aligned nanofibers ( shown in the same period of incubation time . 
FIGS . 14A and 14C ) was completely populated with dural The area of void decreased with increasing incubation 
cells which had migrated from the borders of the apposed 65 time for all the scaffolds tested due to the inward migration 
dural tissue . On the contrary , an acellular region is clearly of cells . As illustrated by FIGS . 17A - 17D , aligned fibers 
visible at the center of the scaffold made of randomly may significantly enhance cell migration compared to ran 



US 11,071,617 B2 
19 20 

dom fibers , and cells migrated fastest on the fibronectin- “ contact guidance ” , could allow for the organization of 
coated scaffold of radially aligned nanofibers for the first 3 extracellular matrix . For most injuries , repair results in 
days of incubation . Around 5 mm ? of surface area remained previously functional tissue becoming a disorganized amal 
uncovered by cells on the uncoated random scaffolds even gam of cell ( e.g. , fibroblasts ) and extracellular matrix ( e.g. , 
after incubation for 7 days . In contrast , cells covered almost 5 collagen fibers ) known as a scar . Highly organized cells and 
the entire area of the simulated defect within the same period extracellular matrix is required for proper tissue regenera 
of incubation for other three types of scaffolds . tion and function , which is normally vastly different from FIGS . 20A - 20D are fluorescence micrographs showing tissue repair with scarring . It has been demonstrated in the live dural fibroblasts labeled with membrane dye on scaf present work that extracellular matrix type I collagen on folds of radially aligned nanofibers with fibronectin coating 10 scaffolds of radially aligned nanofibers showed a high after a 1 - day culture ( FIG . 20A ) , a 3 - day culture ( FIG . 20B ) , degree of organization , suggesting that radially - aligned a 7 - day culture ( FIG . 20C ) , and a 10 - day culture ( FIG . 20D ) . 
FIG . 20D includes an inset of a high magnification image of nanofiber scaffolds may reduce the possibility of scar tissue 
FIG . 20D indicating that the cells were radially aligned on formation following wound healing . 

A dura substitute should be safe , efficacious , easy to the aligned scaffolds . Cell migration towards the center of a 15 
fibronectin - coated scaffold of radially aligned nanofibers handle , watertight , and easily integrated into the surrounding 
was further confirmed by time lapse imaging shown in tissue to form new tissue similar to the native tissue . Also , 
FIGS . 20A - 20D . it should avoid harmful foreign body reactions , be free of 

Dural tissue is primarily composed of type I collagen . The any potential risk of infections , have mechanical properties 
production of type I collagen from dural fibroblasts was also 20 similar to those of natural dura mater , in particular with 
examined . FIGS . 21A - 21D are fluorescence micrographs respect to flexibility and strength , be stable and / or storable , 
obtained by immunostaining of type I collagen with cell and be available for immediate use . In the present work , 
nuclei with 4 ' , 6 - diamidino - 2 - phenylindole ( DAPI ) in blue biodegradable polymer PCL was chosen as a material for 
for scaffolds of radially aligned fibers ( FIGS . 21A , 21C ) and dural substitute in that PCL has some advantages compared 
randomly oriented fibers ( FIGS . 21B , 21D ) . It was observed 25 with other bioabsorbable polyesters . Heterogeneous degra 
that comparable levels of type I collagen were produced by dation of PGA and poly ( L - lactic acid ) ( PLLA ) could lead to 
cells on the scaffolds of radially aligned fibers as compared a sudden increase of degradation products , resulting in 
to the scaffolds of random fibers although one previous acidic conditions and toxic reactions in the surrounding 
study showed more elongated cells expressed higher colla- tissue . The degradation of PCL is slower and produces 
gen type I than did less elongated cells . Additionally , 30 less - acidic degradation products and has been studied as a 
fibronectin coating had no significant influence on the pro- wound dressing materials since the 1970s . 
duction of type I collagen . The type I collagen was oriented In order to obtain water - tight property , the radially 
haphazardly for the random scaffolds , resembling the extra- aligned nanofiber scaffold can be combined with nonwoven 
cellular composition of amorphous scar tissue , and had a mat to form two - layered or even multi - layered substitutes . 
high degree of organization for the radially aligned scaf- 35 Simultaneously , antibiotics can be readily encapsulated 
folds , resembling healthy connective tissue inside nanofibers to further reduce inflammatory response , 

Recent advances in cell - biomaterial interaction have improve wound healing , and prevent postsurgery adhesion . 
shown that both chemical and topographical properties of Alternatively , PCL can be blended with other polymers to 
the materials surface can regulate and control cell shape and further improve its biocompatibility , as well as mechanical , 
function . Cell orientation , motility , adhesion and shape can 40 physical , and chemical properties . Moreover , extracellular 
be modulated by specific surface micro- and nano - topogra- proteins and / or growth factors can be immobilized on the 
phies . Cells can align along microgrooves or similar topo- surface of the nanofibers using various surface modification 
graphical features on a surface . It was demonstrated that approaches to enhance cell adhesion . The current work 
fibroblasts were the most sensitive cell - type compared to demonstrates the effect of fibronectin coating on the PCL 
endothelial cells and smooth muscle cells , and responded 45 nanofibers through electrostatic interaction on dural fibro 
with a strong alignment , elongation , and migration along blast adhesion and motility . The results presented herein 
such topographical features . demonstrate that fibronectin coating enhanced adhesion of 

Simultaneously , electrospinning has been widely used for dural fibroblasts and improved cell migration on randomly 
producing nanofibers for a rich variety of applications in oriented nanofiber scaffolds . In contrast , the coating had 
tissue engineering including skin grafts , artificial blood 50 marginal contribution to cell motility on radially aligned 
vessels , nerve repair , and others . Yet previous studies were nanofiber scaffolds , compared to the bare scaffolds , indicat 
limited to the use of scaffolds made of random and uniaxi- ing the predominant role played by nanofiber alignment and 
ally - aligned nanofibers . Scaffolds composed of uniaxially- resulting surface topography . 
aligned nanofibers are not practical for wound healing In summary , the fabrication of a new type of electrospun 
applications due to the commonality of irregularly shaped 55 nanofiber scaffold including radially aligned fibers and the 
wounds . The work described herein demonstrated for the potential application of such structures as dural substitutes 
first time the fabrication of a new type of scaffolds made of are described herein . Dural fibroblasts cultured on scaffolds 
radially aligned nanofibers . This novel type of scaffold can of radially aligned nanofibers were elongated parallel to the 
guide dural fibroblasts spreading along the direction of fiber fiber axis , and cell migration towards the center of the 
alignment and direct cell motility towards the center of the 60 scaffold was accelerated along with the development of a 
scaffold , resulting in faster cell migration and infiltration regular arrangement of extracellular matrix like type I 
compared to scaffolds composed of randomly oriented nano- collagen , potentially promoting fast regeneration and for 
fibers . mation of neodura . Taken together , these results suggest that 

In addition , uniaxially aligned nanofiber scaffolds cannot radially aligned nanofibers possess great potential as an 
match such a capability in that they can guide cell migration 65 artificial dural substitute , may offer an alternative in the 
only in one direction . It was reported that controlling cellular repair of dural defects , and furthermore occupy a unique , 
orientation or morphology by topography , the so - called desirable niche within the neurosurgical community . 



used as 

US 11,071,617 B2 
21 22 

Additional Experimental Results the custom - made culture system shown in FIGS . 15A - C . 
In a typical procedure for electrospinning PCL ( Mw = 65 After different periods of time , the cells were stained with 

kDa , Sigma - Aldrich ) nanofibers , a solution of 20 % ( w / v ) FDA in green color and imaged with fluorescence micro 
PCL in a mixture of dichloromethane ( DCM ) and N , N - di- scope . The total surface area of nanofiber scaffold devoid of 
methylformamide ( DMF ) ( Fisher Chemical ) with a volume 5 migrating cells was then quantified using Image J software 
ratio of 8 : 2 was used . The fibers were spun at 10-17 kV with ( National Institute of Health ) . 
a feeding rate ranging from 0.5 mL / h , together with a 23 Living cells were labeled with membrane dye using 
gauge needle as the spinneret . A piece of aluminum foil was VYBRANT DiO cell - labeling solution ( Invitrogen ) accord 

collector to obtain random nanofiber scaffolds . ing to the manufacturer's instructions and then imaged at 
Radially aligned nanofiber scaffolds were fabricated utiliz- 10 day 1 , 3 , 7 , and 10 . 
ing a collector consisting of a ring electrode ( e.g. , metal Production of collagen type I by the dural fibroblasts on 
ring ) and a point electrode ( e.g. , a sharp needle ) . Electrospun the fiber scaffolds was assessed using immunohistochemis 
PCL nanofibers were coated with fibronectin ( Millipore , try . At day 7 , the cells were rinsed with PBS and fixed with 
Temecular , Calif . ) as the following . The electrospun fiber 3.7 % formalin for 1 h ( N = 4 ) . Cells were permeabilized 
scaffolds were sterilized by soaking in 70 % ethanol over- 15 using 0.1 % Triton X - 100 ( Invitrogen ) in PBS for 20 min , 
night and washed three times with phosphate buffered saline followed by blocking in PBS containing 5 % normal goat 
( PBS ) . Then , the scaffolds were immersed in a 0.1 % poly- serum ( NGS ) for 30 min . Monoclonal antibodies for type I 
L - lysine ( PLL ) ( Sigma - Aldrich ) solution for one hour at collagen ( 1:20 dilution ) was obtained from EMD Chemicals 
room temperature , followed by washing with PBS buffer ( Calbiochem , San Diego , Calif . ) . Cells were washed three 
( Invitrogen ) three times . Subsequently , the samples were 20 times with PBS containing 2 % FBS . The secondary antibody 
immersed in a fibronectin solution ( 26 uL 50 ug / mL GtxRb IgG Fluor ( Chemicon , Temecula , Calif . ) ( 1 : 200 
fibronectin solution diluted with 5 mL PBS buffer ) at 4 ° C. dilution ) was applied for 1 h at room temperature . Fluores 
overnight . Prior to cell seeding , the fibronectin solution was cent images were taken using a QICAM Fast Cooled Mono 
removed and the nanofiber scaffolds were rinsed with PBS 12 - bit camera ( Q Imaging , Burnaby , BC , Canada ) attached 
buffer . 25 to an Olympus microscope with OCapture 2.90.1 ( Olympus , 

The PCL nanofiber scaffolds were sputter - coated with Tokyo , Japan ) . 
gold before imaging with scanning electron microscope Mean values and standard deviation were reported . Com 
( Nova 200 NanoLab , FEI , Oregon , USA ) at an accelerating parative analyses were performed using the Turkey post hoc 
voltage of 15 kV . Samples prepared for use in cell culture test by analysis of variance at a 95 % confidence level . 
were inserted into a 24 - well TCPS culture plate and steril- 30 As a secondary study , an ex vivo model of the surgical 
ized by soaking scaffolds in 70 % ethanol . repair of a small dural defect was developed . Large pieces of 

Fibroblasts were isolated from sections of explanted dura . healthy dura mater ( 3 cmx3 cm ) were placed into cold , 
Specifically , a 2.0 cmx1.5 cm section of dura was removed supplemented Dulbecco's Modified Eagle Media ( DMEM ) 
through sharp dissection and washed three times with cold and microsurgically trimmed into smaller ( 1 cmxl cm ) 
PBS . Dural fibroblasts were then isolated by digesting 35 pieces . Artificial defects were introduced into the pieces of 
minced dura three times in 4 mL of warm Hank's Balanced dura by microsurgically cutting small circular holes , 6-8 mm 
Salt Solution ( HBSS ) containing 0.05 % Trpsin and 0.04 % in diameter , into the middle of the specimens . Radially 
EDTA ( Sigma - Aldrich , St. Louis , Mo. ) . Following digestion aligned nanofiber scaffolds , randomly oriented nanofiber 
collected supernatant was centrifuged and the pellet of dural scaffolds , and DURA MATRIX collagen scaffolds ( 1 cmx1 
cells was isolated and resuspended in Dulbecco's modified 40 cm ) were then utilized to repair the artificial defects by 
Eagle's medium ( DMEM ) supplemented with 10 % calf overlaying the graft onto the dural specimen , such that the 
serum and 1 % penicillin and streptomycin . Dural cells graft covered the entire defect while simultaneously con 
obtained in this manner were then plated in 75 cm² flaks and tacting the dural tissue at the periphery of the specimen . 
expanded ( subpassaged no more than 5 times ) . Assemblies of dural / dural substitute were then cultured in 

Large continuous pieces of dura mater were placed in cold 45 vitro in supplemented DMEM for a period of four days . At 
PBS and microsurgically trimmed into 1 cmx1 cm sections . the terminal time point , optical and fluorescent microscopy 
An artificial defect was then introduced into each section of was utilized to assess the regenerative capacity of the 
dura by microsurgically cutting a small circular hole , 7 mm substitute , defined as the ability of dural cells to migrate onto 
in diameter , in the middle of the section . Sections of dura the artificial substitute and repopulate the acellular region of 
were then introduced into individual wells of 6 - well culture 50 the dural substitute within the artificial defect . 
plates containing 4 mL of DEMEM supplemented with 10 % Results demonstrated that native cells present in intact 
calf serum and 1 % penicillin and streptomycin . Random and dura ( primarily dural fibroblasts ) readily migrated onto 
radially aligned nanofiber scaffolds 1 cm in diameter were apposed polymeric nanofiber dural substitutes in high con 
then utilized to repair the artificial defects by overlaying the centrations within 24 to 48 hours after coming into contact 
graft onto the dural specimen . Nanofiber scaffolds were 55 with pieces of explanted dura . Dural cell migration onto 
placed on the dura such that the graft covered with entire gold - standard collagen matrices followed a similar time 
defect while simultaneously contacting the dural tissue at the course , though slightly lower concentrations of dural cells 
periphery of the specimen . Nanofiber scaffolds were held in were observed migrating onto collagen matrices compared 
this position throughout the experiment by placing a steril- to nanofiber dural substitutes . This observation suggests that 
ized metal ring over both the scaffold and the dura . After 4 60 nanofiber dural substitutes easily adhere to native dural 
days of culture , the cells were stained with FDA in green tissue , an important quality regarding the intraoperative 
color and imaged with fluorescence microscope . Fluorescent handling and / or placement of the material , and that nanofi 
images were taken using a QICAM Fast Cooled Mono ber dural substitutes provide an ideal substrate for dural 
12 - bit camera ( Q Imaging , Burnaby , BC , Canada ) attached fibroblast adhesion . 
to an Olympus microscope with OCapture 2.90.1 ( Olympus , 65 Further examination of the various dural substitutes after 
Tokyo , Japan ) . Similarly , around 1x105 dural fibroblast cells four days of culture revealed that dural fibroblast migration 
were seeded onto the periphery of nanofiber scaffolds using into the central , acellular region of the material proceeded 
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significantly faster on radially aligned nanofiber substitutes randomly oriented nanofiber dural substitute , and a bi - layer 
than on randomly oriented nanofiber substitutes or collagen radially aligned nanofiber dural substitute are grouped by 
matrices . This finding was evidenced by the fact that after elapsed time on an x - axis 2210 . 
four days of culture , a prominent acellular region ( “ void FIG . 23 is a graph 2300 illustrating regenerative collag 
space ” ) remained on samples of both the random nanofiber 5 enous tissue content over time . In graph 2300 , a y - axis 2305 
substitute and the collagen matrix . represents the percentage of regenerated dura that is com 

In contrast , samples of radially aligned nanofiber mate- posed of regenerative collagenous tissue . Samples with a 
rials examined at the same time point were completely collagen dural substitute , a mono - layer randomly oriented 
populated with dural cells which had migrated from the nanofiber dural substitute , and a bi - layer radially aligned 
borders of the apposed dural tissue . In effect , radially aligned 10 nanofiber dural substitute are grouped by elapsed time on an 
nanofiber substitutes were able to induce significantly faster x - axis 2310 . 
“ healing " of this simulated dural defect than both randomly Electrode Arrays 
oriented materials . High magnification views of dural sub- In some embodiments , a collector includes a plurality of 
stitutes within this ex vivo culture further demonstrated the electrodes at least partially circumscribing an area and a 
ability of radially aligned nanofiber materials to align and 15 second electrode positioned within the area . The electrodes 
direct native , migratory dural cells , a result similar to that of may be arranged in an array , such as a grid and / or other 
the previous study conducted using pre - seeded dural fibro- polygonal pattern , and a polymer deposited on the electrodes 
blasts . Specifically , dural cells were noted to align and may form fibers extending between the electrodes of the 
extend parallel to individual nanofibers within the artificial collector , such that the fibers define the sides of a plurality 
substrate , as well as deposit organized extracellular matrix 20 of polygons , with the electrodes positioned at the vertices of 
proteins ( namely type I collagen ) on the aligned nanofiber the polygons . In some embodiments , the structure created by 
materials . This observation suggests that the topographical such fibers may be used to create a cell microarray , such as 
cues presented by aligned nanofiber substitutes are capable by seeding the structure with cells and incubating the cells 
of organizing and directing native dural cells migrating from to promote propagation of the cells throughout the structure . 
intact dura , and may enhance the ability of these migratory 25 Cell microarrays may provide powerful experimental 
cells to deposit extracellular matrix proteins necessary to tools for high - throughput screening useful in a number of 
heal and repair dural defects . applications ranging from drug discovery and toxicology to 

Results of this secondary study demonstrate that nanofiber stem cell research and tissue engineering . For example , cell 
dural substitutes not only provide a favorable scaffold for microarrays may represent an effective means of fabricating 
dural cell adhesion and migration , but readily support the 30 ordered neuronal networks useful in studying synapse for 
ingrowth of dural cells from whole , intact dura mater . The mation and neuronal plasticity in vitro . At least some known 
ability of nanofiber materials to intimately interface intact techniques for fabrication of neuronal microarrays have 
dura mater and facilitate rapid cellular population of the concentrated on the use of spatial patterning of cell adhesive 
polymeric scaffold strongly suggest that this material may and / or cell repulsive materials and agents . Unfortunately , 
function exceptionally well as an artificial graft in the 35 such fabrication techniques may be time consuming and 
surgical repair of complex dural defects . In addition , dural costly , and involve the use of sophisticated instrumentation 
substitutes constructed of radially aligned nanofibers were ( e.g. , photolithography , soft lithography , contact printing , 
demonstrated to promote faster “ healing " of simulated dural microfluidics , nanoprinting , and inkjet printing ) . 
defects than randomly oriented materials , suggesting that Electrospinning is capable of producing one - dimensional 
aligned nanofiber scaffolds imparting nanoscale topographi- 40 fibers with diameters ranging from several nanometers to 
cal features may represent a significant technological several microns . The large surface area to volume ratio and 
advance over clinical gold - standard collagen matrices . nanoscale morphology of electrospun nanofibers may sug 

Although experiments described herein were limited in gest that these materials effectively mimic the architecture of 
duration , the results of these experiments suggest that bio- extracellular matrix ( ECM ) . As a result , electrospun nano 
medical patches including radially aligned fibers are viable 45 fiber materials have been utilized in a wide variety of 
for use in tissue repair at longer durations . For example , it biomedical applications . Electrospun nanofibers may be 
is expected that the observed accelerated cellular ingrowth deposited on a conductive collector in a random fashion 
would continue until the biological tissue at the site of a and / or aligned into uniaxial arrays through manipulation of 
defect is completely regenerated and / or until degradation of an electric field and / or application of mechanical force . 
the biomedical patch is complete . Embodiments described herein facilitate producing a 
In Vivo Experimental Results complex cell microarray using electrospun nanofibers . In 

In vivo experimentation was performed by imposing a 12 exemplary embodiments , a collector with an array of elec 
millimeter diameter dural defect in native porcine dura . The trodes is used to fabricate electrospun nanofiber scaffolds 
defect was repaired with a collagen dural substitute , a that include a complex , ordered architecture and numerous 
mono - layer dural substitute with randomly oriented nanofi- 55 multiwells . Such a scaffold may be valuable at least for i ) 
bers , and a bi - layer dural substitute with one layer of radially cell microarray formation , and ii ) neuronal network forma 
aligned nanofibers fused to a second layer of randomly tion . The use of presented complex nanofiber arrays may 
oriented nanofibers through layer - by - layer stacking ( e.g. , as facilitate the creation of advanced substrates useful in neural 
described above with reference to FIG . 8 ) . In a control engineering applications and cell arrays useful in bio - sens 
group , the defect was unrepaired . 60 ing and drug screening applications . 
FIG . 22 is a graph 2200 illustrating the thickness of FIG . 24 is a diagram illustrating a perspective view of an 

regenerated dura at the center of repaired dural defects over example electrospinning system 2400 for producing a struc 
time . In graph 2200 , a y - axis 2205 represents the total ture of polygonally aligned fibers using an array of elec 
thickness of regenerated dura , including both regenerative trodes . System 2400 is similar to system 100 ( shown in FIG . 
tissue and the integrated dural substitute material , at the 65 1 ) in structure and operation . A collector 2405 includes a 
center of a dural defect . Samples with no dural substitute plurality of first electrodes 2410 , which may be referred to 
( control samples ) , a collagen dural substitute , a mono - layer as peripheral electrodes . First electrodes 2410 define and / or 
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at least partially circumscribe an area 2415 , such as a In some embodiments , collector 2405 includes peripheral 
polygon . As illustrated in FIG . 24 , the area 2415 defined by electrodes 2410 that define a plurality of areas 2415. For 
first electrodes 2410 is a hexagon . A second electrode 2420 , example , peripheral electrodes 2410 immediately surround 
which may be referred to as an inner electrode , is positioned ing inner electrode 2420 may be considered inner peripheral 
within ( e.g. , approximately at the center of ) area 2415 , such 5 electrodes , and a plurality of outer peripheral electrodes 
that first electrodes 2410 surround second electrode 2420. In 2435 may surround inner peripheral electrodes 2410 , such 
exemplary embodiments , first electrodes 2410 and second that inner peripheral electrodes 2410 are nested within outer 
electrodes are metallic ( e.g. , stainless steel ) beads having a peripheral electrodes 2435. Collector 2405 may include any 
diameter between 0.5 millimeters ( mm ) and 5.0 mm ( e.g. , quantity of nested sets of peripheral electrodes . While col 
1.0 mm or 2.0 mm ) . lector 2405 includes electrodes in a closely - packed arrange 

System 2400 also includes a spinneret 120 and is config- ment ( e.g. , with electrodes contacting each other ) , it is 
ured to create an electric potential between collector 2405 contemplated that electrodes may be displaced from each 
and spinneret 120 , as described above with reference to FIG . other by an inter - electrode distance , which may be constant 
1. In exemplary embodiments , peripheral electrodes 2410 throughout the collector or may vary between different pairs 
and inner electrode 2420 are electrically coupled to a power of electrodes . 
supply 130 via a conductor 135 , and spinneret 120 is Further , in some embodiments , a collector may include 
coupled to power supply 130 via a conductor 145. Power electrodes that define a plurality of partially overlapping 
supply 130 is configured to charge peripheral electrodes areas in a modular fashion . FIG . 25 is a diagram illustrating 
2410 at a first amplitude and / or polarity via conductor 135 , 20 a perspective view of an example modular electrospinning 
and to charge spinneret 120 at a second amplitude and / or collector 2500. Collector 2500 includes first electrodes 2505 
polarity , opposite the first polarity , via conductor 145 . surrounding a second electrode 2510. First electrodes 2505 

In the embodiment illustrated in FIG . 24 , peripheral define a first hexagonal area 2515. With respect to first 
electrodes 2410 and inner electrode 2420 are metallic ( e.g. , hexagonal area 2515 , second electrode 2510 may be con 
stainless steel ) beads or balls , which may be referred to as 25 sidered an inner electrode , and first electrodes 2505 may be 
" microbeads , ” arranged in a hexagonal pattern . In some considered peripheral electrodes . 
embodiments , circular enclosed area 125 may have a diam- Collector 2500 also includes a plurality of third electrodes 
eter of between 1 centimeter and 20 centimeters . In other 2520 that are positioned outside first hexagonal area 2515 . 
embodiments , peripheral electrodes 2410 and inner elec- Third electrodes 2520 , second electrode 2510 , and a subset 
trode 2420 may be any shape and / or may be arranged in any 30 of first electrodes 2505 define a second hexagonal area 2525 
pattern suitable for use with the methods described herein . that partially overlaps first hexagonal area 2515. One of the 
For example , peripheral electrodes 2410 and inner electrode first electrodes 2505 ( e.g. , a peripheral electrode with respect 
2420 may be pins , rods , es , and / or ridges . Further , to first hexagonal area 2515 ) is positioned within second 
peripheral electrodes 2410 and inner electrode 2420 may be hexagonal area 2525. With respect to second hexagonal area 
arranged in an octagonal , pentagonal , and / or square pattern , 35 2525 , this first electrode 2505 may be considered an inner 
for example , though other polygonal and non - polygonal electrode . Third electrodes 2520 , the subset of the first 
arrangements , regular and / or irregular , are also contem- electrodes 2505 , and the second electrode 2510 may be 
plated considered peripheral electrodes . Although electrodes defin 

In one embodiment , area 2415 defines a horizontal plane ing two partially overlapping areas are illustrated in FIG . 25 , 
2425. Spinneret 120 is aligned with inner electrode 2420 and 40 it is contemplated that the modular nature of collector 2500 
vertically offset from horizontal plane 2425 at a variable facilitates including any quantity of electrodes that define 
distance . For example , spinneret 120 may be vertically offset any quantity of areas , such that collector 2500 may be 
from horizontal plane 2425 at a distance of 1 centimeter to extended in one or more directions by adding electrodes to 
100 centimeters . In exemplary embodiments , inner electrode the perimeter of collector 2500 . 
2420 and / or peripheral electrodes 2410 include a rounded 45 As described above with reference to system 2400 ( shown 
( e.g. , convex ) surface , such as the surface of the metallic in FIG . 24 ) , collector 2500 ( e.g. , first electrodes 2505 , 
beads shown in FIG . 24 , oriented toward horizontal plane second electrode 2510 , and third electrodes 2520 ) is con 
2425 . figured to be electrically charged at an amplitude and / or a 
As described above with reference to FIG . 1 , spinneret polarity opposed the amplitude and / or polarity at which 

120 is configured to dispense a polymer 140 while spinneret 50 spinneret 120 is electrically charged . When these compo 
120 is electrically charged at the second amplitude and / or nents are so charged , a polymer dispensed by spinneret 120 
polarity , and peripheral electrodes 2410 and inner electrode may form fibers extending between the electrodes ( e.g. , first 
2420 are electrically charged at the first amplitude and / or electrodes 2505 , second electrode 2510 , and / or third elec 
polarity . Spinneret 120 dispenses polymer 140 as a stream trodes 2520 ) of collector 2500 . 
160. Stream 160 has a diameter approximately equal to the 55 FIG . 26 is a diagram 2600 illustrating an electric field 
aperture diameter of spinneret 120. Stream 160 descends generated by an electrospinning system such as electrospin 
toward collector 2405. For example , stream 160 may fall ning system 2400 ( shown in FIG . 24 ) . Diagram 2600 shows 
downward under the influence of gravity and / or may be a two dimensional , cross - sectional view of electric field 
attracted downward by a charged conductive surface 162 strength vectors between a spinneret 120 and a plurality of 
positioned below collector 2405. For example , conductive 60 electrodes 2605 . 
surface 162 may be electrically coupled to conductor 135 Electric field vectors near the surface of electrodes 2605 
and charged at the same amplitude and / or polarity as periph- are oriented perpendicular to the surface of electrodes 2605 . 
eral electrodes 2410 and central electrode 2420. As stream Electric field vectors between two neighboring electrodes 
160 descends and is deposited on collector 2405 , polymer split into two main streams , pointing towards the centers of 
140 forms one or more solid polymeric fibers 2430 extend- 65 the two adjacent electrodes 2605. Accordingly , fibers depos 
ing from inner electrode 2420 to a peripheral electrode 2410 ited on the surface of electrodes 2605 may be randomly 
and / or between peripheral electrodes 2410 . distributed , while the fibers deposited in the region between 
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two neighboring electrodes 2605 may be uniaxially aligned FIGS . 28B - 28D are fluorescence microscopy images 
between these two adjacent electrodes 2605 . illustrating cell microarrays . Live MG - 63 cells were stained 
FIGS . 27A - 27F are microscopy images of a nanofiber with fluorescein diacetate and are shown as light areas 

membrane 2705 produced using a collector with an array of against a dark background in FIGS . 28B - 28D . 
electrodes , such as collector 2405 ( shown in FIG . 24 ) . For 5 FIG . 28B shows an array of cells selectively adhered to 
example , membrane 2705 may be produced using an array the microwells within the nanofiber membrane . Each well 
of stainless steel beads . FIG . 27A is an optical microscopy within the scaffold was observed to contain approximately 
image of a membrane 2705. FIG . 27A includes an inset 2710 45 cells , while very few cells were observed outside of the 
illustrating a magnification of membrane 2705 with a light microwells within the fiber membrane . The average number 
source on the right - hand side of the image . Shadows in inset 10 of cells adherent on each microwell was easily manipulated 
2710 indicate wells within membrane 2705 , the positions of by controlling the density of cells present within the seeding 
which correspond to the positions of electrodes in the droplets . 
collector . FIG . 28C demonstrates cell microarrays seeded with 
FIG . 27B is a scanning electron microscopy ( SEM ) image greater numbers of cells ( approximately 150 cells per well ) 

of membrane 2705 illustrating the complex , ordered archi- 15 than were used in the arrays shown in FIG . 28B . Despite 
tecture composed of hexagonally arranged wells 2715 con- increasing cell concentrations , cells remained greatly con 
nected with uniaxially aligned fiber arrays 2720. The depth fined to the wells in the nanofiber scaffold . FIG . 28D shows 
of the wells formed by depositing electrospun nanofibers on the same cell microarray shown in FIG . 28C after incubation 
packed stainless steel microbeads 1.0 mm and 2.0 mm in for three days . Comparison of FIG . 28D to FIG . 28C 
diameter was approximately 200 micrometers ( um ) and 400 20 demonstrates that seeded cells were capable of proliferating 
um , respectively . Such wells may be referred to as “ microw- and migrating on the surface of the nanofiber scaffolds , yet 
ells . " generally remained physically confined within the wells of 
FIGS . 27C - 27F are magnifications of corresponding areas the cell microarray . 

within FIG . 27B . FIG . 27C suggests that the fibers deposited In order to examine the potential of these unique nano 
on the surface of microbead electrodes were randomly 25 fiber scaffolds as effective substrates for neural engineering 
distributed . FIG . 27D shows that the fibers at the interface applications , dorsal root ganglia ( DRG ) were seeded onto 
between the surface of an electrode and a gap between fiber membranes functionalized with polylysine and laminin 
electrodes transitioned from a random orientation to an and incubated for 6 days . Resulting neurite fields protruding 
aligned orientation . FIG . 27E indicates that fibers deposited from DRG were stained with anti - neurofilament 200 to 
along the axis connecting the centers of two adjacent elec- 30 visualize neurite extension along the underlying nanofiber 
trodes were uniaxially aligned parallel to that axis . FIG . 27F scaffold . 
shows that the fiber density was significantly lower between FIGS . 29A and 29B are microscopy images illustrating 
neighboring beads and away from the axes connecting the neurite propagation in a membrane such as membrane 2705 
centers of adjacent beads than in other regions ( e.g. , shown ( shown in FIGS . 27A - 27F ) . FIG . 29A is an overlay of an 
in FIGS . 27C - 27E ) , and that fiber deposited in this region 35 optical microscopy image and a fluorescence microscopy 
were randomly oriented . image illustrating that neurites emanated from a DRG main 

In some embodiments , a fiber membrane , such as mem- body located at the center of FIG . 29A and formed an 
brane 2705 , may be combined with other membranes . For appreciable neuronal network after 6 days of culture . Neu 
example , a membrane with a plurality of wells intercon- rites were observed to grow along the long axes of uniaxially 
nected by uniaxially aligned fibers may be used as one layer 40 aligned nanofibers and reach neighboring microwells , effec 
within a multi - layer structure , as described above with tively replicating the geometry of the underlying nanofiber 
reference to FIG . 8. In addition , or alternatively , different architecture . 
collector types may be combined , such as by using an FIG . 29B is an overlay of an optical microscopy image 
electrode array collector as an inner collector ( e.g. , corre- and a fluorescence microscopy image adjacent to the region 
sponding to a center of a biomedical patch , and using a 45 shown in FIG . 29A . FIG . 29B demonstrates that neurites 
ring - type collector ( e.g. , as shown in FIG . 1 ) as an outer may continue growing along the direction of uniaxial align 
collector that surrounds the inner collector . ment of nanofibers after reaching the neighboring wells and 
Experimental Results navigate to other neighboring wells along the fiber align 

Fiber membranes , or “ scaffolds , ” produced by an elec- ment in several directions . Neurites extending to adjacent 
trode array collector as described above were evaluated for 50 microwells were subsequently observed to split into five 
use as substrates for generating cell microarrays . Cells were groups following the aligned fiber arrays which connected to 
selectively seeded onto the surface of the scaffold by placing a secondary set of adjacent wells , further indicating capa 
a small amount of media , containing specified number of bility of the scaffold to form a complex neuronal network in 
cells , onto the microwells present within the nanofiber vitro . 
arrays . FIGS . 30A and 30B are overlays of an optical microscopy 

FIGS . 28A - 28D are microscopy images illustrating cell image and a fluorescent microscopy image illustrating neu 
growth in a membrane such as membrane 2705 ( shown in ronal network formation from embryoid bodies in a mem 
FIGS . 27A - 27F ) . FIG . 28A is an optical microscopy image brane such as the membrane shown in FIGS . 27A - 27F . 
illustrating that droplets 2805 containing cells may be placed Embryonic stem ( ES ) cells , cultured to aggregate into 
within the wells of a fiber membrane . Further , hydrophobic 60 embryoid bodies ( EBs ) using the 4-14 + protocol , were 
fibers may facilitate maintaining such droplets for over two seeded onto electrospun nanofiber scaffolds such as that 
hours . Cells adherent to the nanofiber matrices after two shown in FIGS . 27A - 27F , and incubated with B27 supple 
hours were found to be loosely attached and were easily ment to induce neuronal differentiation . Immunostaining 
removed using PBS buffer , suggesting fast , reversible bind- with Tuj1 , a neuronal marker , was performed after incuba 
ing of cells within the microarrays . Cells adherent to the 65 tion for 14 days to examine the ability of underlying 
nanofiber matrices after twenty - four hours were stained with nanofiber scaffolds to promote neuronal differentiation in 
fluorescein diacetate ( FDA ) in green to identify living cells . vitro . 

55 



US 11,071,617 B2 
29 30 

FIGS . 30A and 30B demonstrate the ability of EBs to humidified atmosphere containing 5 % CO2 . A certain num 
form neuronal networks on nanofiber membrane substrates . ber of cells were seeded into each well of the scaffolds by 
In one case , one EB was confined within one of the placing small droplets onto wells . After incubation for 2 
microwells , while neurites extended peripherally along the hours , the scaffolds were washed with culture media to 
underlying fiber pattern , as shown in FIG . 30A . Neurites 5 remove the loosely attached cells . Then , the living cells were 
extending from cultured EBs were similarly aligned on the stained with fluorescein diacetate ( FDA ) after incubation for 
uniaxial portion of the scaffold where fibers were highly 24 hours and imaged with fluorescence microscope . 
organized . Upon reaching the region of the adjacent wells , Additional Electrode Array Arrangements 
neurites were haphazardly organized as a result of the In addition to particular examples of electrode arrays 
random orientation of the underlying fibers . 10 described above with reference to experimental results , it is 

In another case , EBs were seeded on regions of uniaxially contemplated that nanofiber structures such as those 
aligned nanofibers within the nanofiber array , as shown in described herein may be produced with various other elec 
FIG . 30B . Neurites again extended along the direction of trode arrays . FIGS . 31A - 31D are scanning electron micros 
fiber alignment , and , upon reaching the nearest well , exhib- copy images illustrating membranes produced using a vari 
ited a disordered organization . Notably , when the neurites 15 ety of electrode arrays . 
extended through the microwell region , their uniaxial align- FIG . 31A illustrates a fiber membrane fabricated using a 
ment , parallel to the underlying fiber alignment , was collector composed of hexagonal arrays of stainless steel 
restored . Together , these results suggest that nanofiber archi- beads . FIG . 31B illustrates a fiber membrane fabricated 
tectures described herein represent a simple and effective using a collector composed of hexagonal arrays of stainless 
means of developing complex neuronal networks from 20 steel beads having a larger diameter than the stainless steel 
either primary neurons or embryonic stem cells . beads used to produce the membrane shown in FIG . 31A . 
Experimental Procedure Other , non - hexagonal , packing orders may also be 

The electrospinning system used for fabricating and col- employed with the electrodes to achieve different geom 
lecting aligned nanofibers was similar to system 2400 etries . FIG . 31C shows a fiber membrane fabricated using a 
( shown in FIG . 24 ) . The polymer solution used for electro- 25 collector composed of a close - packed square array of stain 
spinning contained 20 % PCL ( w / v ) in a mixed solvent of less steel beads . FIG . 31D shows a fiber membrane produced 
dichloromethane ( DCM ) and dimethylformaldehyde ( DMF ) using a collector composed of square arrays of stainless steel 
with a volume ratio of 80:20 . The collector included assem- microbeads with a gradual increase of the inter - electrode 
blies of stainless steel microbeads with diameters of 1 mm distance in one direction . The fiber membranes were not 
and 2 mm , respectively . The fiber membranes were trans- 30 removed from the collectors during SEM imaging and can 
ferred to culture plates and then fixed by medical grade be readily removed ( e.g. , peeled off ) from collectors as 
silicon adhesive . The PCL fibers were sputter - coated with needed . 
gold before imaging with scanning electron microscope at FIG . 32 is a diagram of a collector 3200 with peripheral 
an accelerating voltage of 15 kV . electrodes 3205 partially circumscribing an area 3210. Col 

For dorsal root ganglia ( DRG ) culture and immunostain- 35 lector 3200 also includes an inner electrode 3215. Peripheral 
ing , DRG were dissected from the thoracic region of embry- electrodes 3205 and inner electrode 3215 define a portion 
onic day 8 chicks ( E8 , stage HH35-36 ) and collected in 3220 of area 3210. In exemplary embodiments , peripheral 
Hank's buffered salt solution ( HBSS ) prior to plating . DRG electrodes 3205 are positioned on a perimeter 3225 of area 
were seeded on the fiber architectures and incubated for 6 3210 . 
days in modified neurobasal ( NB ) media containing 1 % 40 In the embodiment shown in FIG . 32 , area 3210 is shown 
ABAM , 1 % N - 2 supplement ( Invitrogen ) , and 30 ng / mL as an ellipse ( e.g. , a circle ) , and portion 3220 is shown as a 
Beta nerve growth factors ( B - NGF ) ( R & D Systems , Min- sector of the ellipse . It is contemplated that area 3210 may 
neapolis , Minn . ) . After incubation for 6 days , the DRG were be any geometric or non - geometric shape , such as an ellipse , 
immunostained with the marker anti - neurofilament 200 polygon , oval , rectangle , square , triangle , and / or any recti 
( Sigma - Aldrich ) . Briefly , the DRG were fixed in 3.7 % 45 linear or curvilinear shape , and that portion 3220 may be any 
formaldehyde for 45 minutes and permeabilized by 0.1 % portion of such a shape . 
Triton X - 100 for 30 minutes . The samples were blocked in Electrode array fiber structures described herein enable 
PBS containing 2.5 % bovine serum albumin ( BSA ) ( Sigma- the formation of “ dimple ” structures within a fiber mem 
Aldrich ) for 1 hour . Anti - NF 200 diluted with PBS contain- brane . Accordingly , the production of such membranes 
ing 1.5 % BSA was applied to the cells overnight at 4 ° C. A 50 represents a significant advance in that the fiber membranes 
secondary antibody , AlexaFluor 488 goat anti - mouse IgG described possess multiple microwells arranged into vari 
( 1 : 200 , Invitrogen ) , was then applied for 1 hour at room able , ordered geometries . Furthermore , such structures pos 
temperature . After staining , fluorescence images were cap- sess unique , three - dimensional microwells capable of physi 
tured . cally confining cells seeded on the surface of the scaffold 

For embryoid body formation and immunostaining , EBs 55 and facilitating the fabrication of cell microarrays . Com 
were seeded onto fiber architectures and incubated with pared to known approaches to microarray fabrication , the 
neural basal media containing B27 supplement . After 14 use of fiber membranes may be a simpler and less expensive 
days , immunohistochemistry was performed to visualize the technique for forming complex cell microarrays for in vitro 
spatial distribution of neurites according to our previous and in vivo use . Further , experimental results described 
study . 60 above demonstrate that the neurites on the site of wells 

The MG - 63 cell line was used to demonstrate the forma- presented random distribution , and that neurites could 
tion of cell microarrays . Cells were cultured in alpha mini- bridge from one well to another along the aligned fibers in 
mum essential medium ( a - MEM , Invitrogen , Grand Island , between . A neuronal network developed using such a struc 
N.Y. ) , supplemented with 10 % fetal bovine serum ( FBS , ture could be used for high - throughput applications in 
Invitrogen ) and 1 % antibiotics ( containing penicillin and 65 neurotoxicology and neurodevelopmental biology . 
streptomycin , Invitrogen ) . The medium was changed every While the making and use of various embodiments of the 
other day , and the cultures were incubated at 37 ° C. in a invention are discussed in detail above , the embodiments of 
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the invention provide many applicable inventive concepts the surface , the first polymeric scaffold , and the second 
that may be embodied in a wide variety of specific contexts . polymeric scaffold of the biomedical patch device 
The specific embodiments discussed herein are merely illus- comprising sufficient durability to maintain stability of 
trative of specific ways to make and use the invention and do the biomedical patch for a storage period prior to 
not delimit the scope of the invention . application of the biomedical patch device to the tissue . 

To facilitate the understanding of this invention , a number 2. The biomedical patch of claim 1 , wherein a first portion of terms are defined below . Terms defined herein have of the biomedical patch of a particular size comprises a meanings as commonly understood by a person of ordinary higher number of fibers than a second portion of the bio skill in the areas relevant to the embodiments of the inven medical patch of the particular size . tion . Terms such as “ a , " " an " and " the " are not intended to 10 3. The biomedical patch of claim 2 , wherein the surface refer to only a singular entity , but include the general class 
of which a specific example may be used for illustration . The comprises a surface pattern formed by positioning a mask 

between a collector and a spinneret , wherein the mask is terminology herein is used to describe specific embodiments 
of the invention , but their usage does not delimit the configured to prevent depositing at least some of the first 

structure of fibers or the second structure of fibers on the invention , except as outlined in the claims . 
The order of execution or performance of the operations collector . 

in embodiments of the invention illustrated and described 4. The biomedical patch of claim 2 , wherein the surface 
herein is not essential , unless otherwise specified . For comprises a surface pattern formed by depositing the first 
example , it is contemplated that executing or performing a structure of fibers and the second structure of fibers directly 
particular operation before , contemporaneously with , or 20 on a collector without a mask . 
after another operation is within the scope of aspects of the 5. The biomedical patch of claim 4 , wherein the surface 
invention . Embodiments of the invention may include addi- pattern comprises a plurality of organized features . 
tional or fewer operations than those disclosed herein . 6. The biomedical patch of claim 1 , wherein at least a 

portion of the first structure of fibers and at least a portion 
What is claimed is : 25 of the second structure of fibers are deposited simultane 
1. A biomedical patch device for tissue repair , the bio- ously . 

medical patch device comprising : 7. The biomedical patch of claim 1 , wherein the surface a first polymeric scaffold comprising a first structure of comprises a plurality of structural features configured to 
fibers having electrospun nanofibers , the first structure align cells . of fibers comprising randomly oriented fiber sections , 30 8. The biomedical patch of claim 1 , wherein the first the first structure of fibers configured to promote cell structure of fibers and the second structure of fibers com growth for a first period of time upon application of the 
biomedical patch to a tissue , wherein the first period of prise one or more randomly oriented fibers . 
time is less than three months ; and 9. The biomedical patch of claim 1 , wherein the first 

a second polymeric scaffold comprising a second struc- 35 structure of fibers and the second structure of fibers com 
ture of fibers having electrospun nanofibers , the second prise one or more radially aligned fibers . 
structure of fibers comprising a plurality of radially 10. The biomedical patch of claim 1 , wherein the first 
aligned fiber sections and a plurality of randomly structure of fibers and the second structure of fibers com 
oriented fiber sections , prise one or more uniaxially aligned fibers . 

wherein one or more of the plurality of radially aliened 40 11. A biomedical wound matrix for facilitating wound 
fiber sections transition into one or more of the plurality healing , the biomedical wound matrix comprising : 
of randomly oriented fiber sections of the second a first polymeric scaffold comprising a first structure of 
structure of fibers , wherein one or more of the plurality fibers having electrospun nanofibers , the first structure 
of radially aliened fiber sections is overlaid on one or of fibers comprising a plurality of randomly oriented 
more of the plurality of randomly oriented fiber sec- 45 portions of fibers , the first structure of fibers configured 
tions of the second structure of fibers , to promote cell growth upon application of the bio 

the second structure of fibers configured to provide struc medical wound matrix to a tissue ; and 
tural reinforcement to the first polymeric scaffold for a a second polymeric scaffold comprising a second struc 
second period of time upon application of the biomedi- ture of fibers having electrospun nanofibers , the second 
cal patch to the tissue , wherein the second period of 50 structure of fibers comprising a plurality of radially 
time is less than three months ; aligned portions of fibers and a plurality of non - radially 

the first structure of fibers and the second structure of aligned portions of fibers , 
fibers generated by depositing via electrospinning a wherein one or more of the plurality of radially aliened 
first polymer composition and a second polymer com portions of fibers transition into one or more of the 
position , the first polymer composition being different 55 plurality of non - radially aliened portions of fibers of the 
from the second polymer composition ; second structure of fibers , wherein one or more of the 

the biomedical patch device further comprising a surface plurality of radially aligned portions of fibers is over 
configured to contact tissue upon application of the laid on one or more of the plurality of non - radially 
biomedical patch , aliened portions of fibers of the second structure of 

the surface , the first polymeric scaffold , and the second 60 fibers , 
polymeric scaffold of the biomedical patch device the second structure of fibers configured to provide struc 
sufficiently pliable to facilitate application of the bio- tural reinforcement to the first polymeric scaffold ; 
medical patch device to uneven surfaces of the tissue , the first structure of fibers and the second structure of 

the surface , the first polymeric scaffold , and the second fibers generated by depositing via electrospinning a 
polymeric scaffold of the biomedical patch device 65 first polymer composition and a second polymer com 
sufficiently pliable to enable movement of the biomedi- position , the first polymer composition being different 
cal patch device with the tissue , and from the second polymer composition ; 
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the biomedical wound matrix further comprising a surface wherein one or more of the plurality of radially aliened 
configured to contact tissue upon application of the fiber portions transition into one or more of the plural 
biomedical wound matrix , ity of non - radially aliened fiber portions of the second 

the surface , the first polymeric scaffold , and the second structure of fibers , wherein one or more of the plurality 
polymeric scaffold of the biomedical wound matrix 5 of radially aliened fiber portions is overlaid on one or sufficiently pliable to facilitate application of the bio more of the plurality of non - radially aliened fiber medical wound matrix to uneven surfaces of the tissue , portions of the second structure of fibers , the surface , the first polymeric scaffold , and the second the second structure of fibers configured to provide struc polymeric scaffold of the biomedical wound matrix tural reinforcement to the first polymeric scaffold ; sufficiently pliable to enable movement of the biomedi- 10 the first structure of fibers and the second structure of cal wound matrix with the tissue , and 

wherein the first structure of fibers and the second struc fibers generated by depositing via electrospinning a 
ture of fibers are configured to degrade after application first polymer composition and a second polymer com 
to the tissue . position , the first polymer composition being different 

12. The biomedical wound matrix of claim 11 , wherein a 15 from the second polymer composition ; 
first portion of the biomedical wound matrix of a particular the biomedical wound matrix further comprising a surface 
size comprises a higher number of fibers than a second configured to contact tissue , 
portion of the biomedical wound matrix of the particular the biomedical wound matrix sufficiently flexible to facili 
size . tate application of the biomedical wound matrix to 

13. The biomedical wound matrix of claim 11 , wherein 20 uneven surfaces of the tissue , 
the first polymeric scaffold comprises a first topographical the biomedical wound matrix sufficiently flexible to 
cue and the second polymeric scaffold comprises a second enable movement of the biomedical wound matrix with 
topographical cue . the tissue , and 

14. The biomedical wound matrix of claim 13 , wherein wherein the first structure of fibers and the second struc 
one or more of the first topographical cue or the second 25 ture of fibers are configured to degrade after application 
topographical cue are randomly oriented to resemble an to the tissue . 
extracellular matrix . 22. The biomedical wound matrix of claim 21 , wherein a 

15. The biomedical wound matrix of claim 11 , wherein first portion of the biomedical wound matrix of a particular the surface comprises a surface pattern comprising a plu size comprises a higher number of fibers than a second rality of organized features . portion of the biomedical wound matrix of the particular 16. The biomedical wound matrix of claim 11 , wherein at size . least a portion of the first structure of fibers and at least a 23. The biomedical wound matrix of claim 21 , wherein portion of the second ructure of fibers are deposited 
simultaneously . the surface of the biomedical wound matrix lacks a surface 

17. The biomedical wound matrix of claim 11 , wherein 35 pattern . 
24. The biomedical wound matrix of claim 21 , further the surface comprises a plurality of structural features con 

figured to facilitate cell growth . comprising a directional cue configured to promote growth 
18. The biomedical wound matrix of claim 11 , wherein of neurites in one or more directions . 

the first structure of fibers and the second structure of fibers 25. The biomedical wound matrix of claim 21 , wherein 
comprise one or more randomly oriented fibers . one or more of the first polymeric scaffold or the second 

19. The biomedical wound matrix of claim 11 , wherein polymeric scaffold is randomly oriented to resemble an 
the first structure of fibers and the second structure of fibers extracellular matrix . 
comprise one or more radially aligned fibers . 26. The biomedical wound matrix of claim 21 , wherein 

20. The biomedical wound matrix of claim 11 , the first structure of fibers and the second structure of fibers wherein 
the first structure of fibers and the second structure of fibers 45 are sterilized . 

27. The biomedical wound matrix of claim 21 , wherein at comprise one or more uniaxially aligned fibers . 
21. A biomedical wound matrix for facilitating wound least a portion of the first structure of fibers and at least a 

healing , the biomedical wound matrix comprising : portion of the second structure of fibers are deposited 
a first polymeric scaffold comprising a first structure of simultaneously . 

fibers having electrospun nanofibers , the first structure 50 28. The biomedical wound matrix of claim 21 , wherein 
of fibers comprising a plurality of randomly oriented the surface comprises a plurality of structural features con 
fiber portion , the first structure of fibers configured to figured to facilitate cell growth . 

29. The biomedical wound matrix of claim 21 , wherein promote cell growth upon application of the biomedical 
wound matrix to a tissue ; and the first structure of fibers and the second structure of fibers 

a second polymeric scaffold comprising a second struc- 55 comprise one or more radially aligned fibers . 
ture of fibers having electrospun nanofibers , the second 30. The biomedical wound matrix of claim 21 , wherein 

the first structure of fibers and the second structure of fibers structure of fibers comprising a plurality of radially 
aligned fiber portions and a plurality of non - radially comprise one or more uniaxially aligned fibers . 
aligned fiber portions , 
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